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Abstract

A random measure 4 on 10,11 2 , (O,IIxR or R+ is said to be separately

exchangeable, If Its distribution is invariant under arbitrary Lebesgue measure

preserving transformations in the two coordinates, and Jointly exchangeable if

e is defined on (0,112 or 2 and Its distribution is Invariant under mappings

by a common measure preserving transformation in both directions. In each case,

we derive a general representation of t in terms of Independent Polsson processes

and i.i.d. random variables.

KEY WORDS: Separate and Joint exchangeability; ergodic distributions; Poisson

processes; uniform random variables.
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1. InM X' 7 IC ANlD ?TIY RUMM

A randan Teasure 4 defined on the product of tw diffuse Polish measure spaces

(XA) and (Yp) is said to be separately exchangeable, if its distribution is

invariant under arbitrary measure preserving transformations of X and Y, i.e.

if 4h-I § t for any measurable mapping h of the form h(x,y)=f(x)g(y), with M-l=

and pg-l=p. If (X,A))=(Y,) , and if the stated invariance is only required to hold

for functions of the form h(x,y)=f(x)f(y) with Af-=A, w shall say instead

that e is jointly ex ale. Of these two notions, separate exchangeability

is clearly the strongest. An even stronger condition is that of cmplete

exchangeability, where thl j- is required for any measurable h with (xp)h-1

)- The main purpose of -the prese*-paper is to derive de Finetti-type

representations of arbitrary separately or jointly exchangeab -fandu'i measures

By this is meant representations of the distributions of as unique mixtures

(convex coniinations) of so calledxreme exchangeable distributions. The

existence of such integral representations is essentially a consequence of-the-

t r (cf. Maitra (1 5 ) Dnkin (3  and Section 12 in Al&ous(2)) so

amu main point is to describe the extre, e measures explicitly.

Through suitable Borel iscrorphisms from the two spaces, one may easily

reduce the problem to the special case -hen X and Y are real intervals, equipped
I ,1-,i " h- ..

with corresponding restrictions and P of Lebe.'gue measure (henceforth always

denoted by). Depending on whether X and Y are finite or infinite, there are

essentially only five different cases to examine, nwely those of separate
excaneaility t [0,112, 2+,[,] R i, o

excaneailiy n Rn(rO,1) 2rR7 and of joint exchangeability on

[0,1j2 or p';. T4gnrlrepresentations in these five fundamental cases will

be given in our in Theorems 1-5, stated later in this section.

The corx one-dirrensional case has been studied extensively in

YFallenberg (7,9), the one-dimensional representation theorems will in fact

play a basic role the present paper. Those results will be presented in

a_ -- - m m l m -_
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Section 3 belo, in extended forms suitable for our present needs, and with

2new and simpler proofs. Tb establish the representations on P+, we shall further

need acme extensions of the representation theorem for exchangeable arrays,

where the original results are due to Aldous' 2  and Hoover(56) (see also

Kallenberg(12)). In this context, the required extensions are provided in

Section 4.

Cases of continuous parameter ruItivariate exchaneability were first

mentioned briefly in Kallenberg (8) and in Section 15 of Aldous (2). ur Theorem 4

essentially confirm a conjecture by PAlous (2), p.139, about the general form

2of an extreue, separately exchangeable countin random measure on R+ (though

Aldous' statement appears somewhat unclear, and his converqence criteria are

wrong). Analogous problems for cntinuous two-parameter processes with

separately or jointly exchangeable increments have been studied extensively by

Kallenberg ( I I ) and Hestir(4)

71o state our rain representation theore, recall that all notions of

exchangeability are henceforth with respect to Lebesgue measure A on (0,1] or R+,

and that an exchan e distribution is extreme by definition, if it admits

only the trivial representation as a mixture of exchangeable laws. By saying

that a random object E has an a.s. representation f( I we mean that there exists

some random element (r.e.) 1, possibly defined on some extension of the original

probability space (4,7,P), such that 4=f(I) holds a.s. Thus no claim is made

about uniqueness or even mmasurability of 1. Note that no extension as above is

needed, if the probability space is already rich enough to support an independent

random variable (r.v.) with a uniform distribution on [0,1] (U(0,1), cf. Lm~ma 1).

By a unit rate Poisson process on R-, we shall mean a Poisson random

measure in the sense of Kallenberg (9 ) with intensity measure kd. we shall further

sayher S.b denotesasay that"I is formed by the sequenc sl, A21 if1~ Kwer a e~e

unit mass at a (Dirac measure). Since the atom positions O(. are only determined

up to a random penmutation of indices, to say that a r.e. 4 is independent of
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( ) is clearly stronger than saying that t is independent of 1. lb avoid

misunderstandings, we further stress the distinction between the chrases

'independent sequence' and 'sequence of independent ... ', where independence

in the former expression is between the sequence and all previously ventioned

r.e. 's, and in the latter between the elements in the sequence. Thus the scme tdat

awkward phrase 'an independent sequence of independent r.e. 's' is required to

express both.

Our five main representation theoreums nay now be stated, in order of

increasing depth and complexity, starting with the relatively elementary

representations on the unit square. We shall use the notation A D for the measure

along the diagonal D-in R;,1 with projections A on the diagonal axes.

Thus A(B)=Afx; (XX)OBI for Borel sets B in [0,1)2 or 2.

Theorem 1. A razn= measure on 10,1 2 is separately exchanceable, if f it

has an a.s. representation

~~~= ~ ~ ~ ~ P aI~~(1 x +1 i ) A +r2 (1)

for some R+-valued r.v.'s G(jir,', i,jeN, and sae independent set of

independent U(0,1) r.v.'s .!,z, i,jtN. Moreover, the former set of r.v. 's mayT 3
be chosen to be non-ranrn, iff - is extree.

Theorem 2. A randm masure C on f0,1 2 is jointly emchaneable, if f it

has an a.s. representation

T.Wij T.+ T-fPj(4J.XA) +/3(Ai~4 S) +IA + tD' (1.2)

for some R+-vaued r.v,.' ,,i,j , and sne independent sequence

of independent U(0,1) r.v.'s 'r, ,... Moreover, the former set of r.v.'s may

be chosen to be non-rwdom, iff r -1 is extreme.

Thmerm 3.. A randin measure R+o x CO, 1] is separately exchangeable, iff

it has an a.s. Lepsentation

I_--_
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i k 1 * Ti k (1.3)

+++ ';z) i: + V 2  n~k ijkN2

for some measurable functions fj,gk,h: R2--. R+, j,k*N, some R -valued r.v.'s

cpjJ, jEN, some indeendent set of indeperdent U(0,1) r.v.'s r and fik' ij,keN,

and sme indepedent sequence of random vectors (a',i%,), iel, which form a unit
2

rate Poisson process on R+. Moreover, the r.v.'s ., (j andT iray be chosen to
be non-random, iff PC' is -1 tre.

Theorem 4. A ranamk measure 4 on R2 is separately exdangeable, iff it has

an a.s. representation

j ;Ij + 1 ' l(Ck) S ,

9~ 1' g *A, (1.4)

k 1 1

4 3 2
for sore neasurable functions f: R+ R+, g,g- R+ and h,hll: R , R+,
R+-valued r.v.'s O and r, some indemdent set of independent U(O,1) r.v. 's

Cij' i,jeN, and swe independent set of independent sequences of random vectors

((Ti,#.), i-N), ((r,%), ieCN), ((.,k) ' keN), , kai), jeN, and
111 kjk)IkNI ((5kjk

((?k',,k), keN), whid form unit rate Poisson processes on R; r R3 ,

respectively. Moreover, c and T may be chosen to be non-randam, iff P - is

extreme.

Theorem 5. A ranom masure _ _n R;_ is jointly exchangeable, iff it has an

a.s. representation

ij

(1.5)

+ .. h...... (ed,.,. A ) +, h (AJ
i iT1
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+ + t{t ()6rk+
k 2

4 3 2
for scie measurable fuctions f: R+- R+, g,g': R- R+ and h,h', '. R- R,

some R+-valued r.v.'s C,PW, sam independent set of inleperent u(,) r.v.'s

tlj= 'i, li4j, and some indpendent set of inderendent sequences of random

vectors (( ). iN) ((jk.Xjk). k*N). jeN, a_ ((.?k'K.k). ktN), which form

unit rate Poisson processes on R7 and R , respectvely. MDreover, , and V ___

be chosen to be non-r ifm f p5-I is extreme.

In most previous work, the various notions of exchangeability for randu

measures have actually been defined in the formally weaker sense of invariance

under permutations of the increments. Thus for random measures t on S= [0,1)2,
2

,- X[0,1] or V, the space S is divided into an arbitrary regular grid of

dyadic squares

A(n) [(i-1) 2,n i2 - n) . [(j-l) 2- n , j2- n) i,j=1,2,... (1.6)

and one requires the associated arrays of increments !(n) - (n) ij=l,2,.ij ij i

to be separately or jointly exchangeable, in the sense that

(n) o) ( (n) o (n) ) = nq(1.7)(W, Ri  ij )  r .isi)=(i '

for each neN, and for any finite permutations 7r and i' of the two index sets.

An intermediate version is to consider the array of restrictions of I to

the sauares P More precisely, we may define for each nel an array of randmn

aon [0,1)2 by

(dsdt) = 5((i-l+ds) 2 n x(j-l+dt)2-n), s,tE([O,j, i,j=l,2,..., (1.8)

and require the condition in (1.7) to hold with the -ij replaced by " mi

is clearly equivalent to restricting f and g in cur original definition to the

sub-classes of A-preserving transformations, which only permute a finite number

of disjoint dyadic intervals of equal length, while leaving the remaining set

invariant.

The possibilities seec bewildering, but fortunately the different ways of

defining exchangeability for random weasures turn out to be equivalent. In the
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one-dimnnsional case, this was noted already in Ka~lenberg ( 9 ) , Lam M 9.0, and

for higher dimensions a simple proof will be furnished in Section 8 below. The

equivalence in the tw-dimensional case xill also follow fran our proofs of the

main results, since these will be based on the third definition above, the one

involvingT transformations of permutation type.

In this way, a slightly greater generality will thus be attained for free.

However, our main reason for the chosen approach is to rake certain general

results from the abstract theory apply. Here one considers random elements

in scae Polish space S, equipped with its Borel 0-field f and a countable group

7T of measurable transfonmations of S, and one says that 4 (or its distribution

p -l) is 7--Te a le, if T- - 5 for every 7"IT. A set I* ? is said to be

T-invariant, if T-1I=I for all T*7, and the class of all 7-invariant sets form

a sub-d-field of Y', the so called 7-invariant c-field 7. Ce says that F or
P -i is 7-2e2rqc, if C17 is P-trivial, i.e. if Pr(tIj equals 0 or 1 for

every Ie 7.

In this abstract setting, it is known (cf. Aldous (2)) that the distribution

0 of an arbitrary 7-exchaneable r.e. V in S has a unique integral representation

in term of eKtrum points, and that the latter are identical with the 7-ergodic

distributions. Furthermore, the conditional distributions

R.* I'7J (1.9)
are a.s. ergodic, so the de Finetti-type representation of ( is formally obtained

simply by taking expectations in (1.9).

It should now be clear why the third of the proposed definitior is the

Most appropriate one for our needs. The class of arbitrary measure preserving

transformations f (or of their tensor products f x g or f x f) is not a group,

simply because f is usually not invertible. lbreover, the-class of such mappings

is uncountable. Cn the other hand, the elementary definition based on permutations

of increrents over square lattices is not suitable either, since it is stated

in terrs of transformations of certain functions of the random measure t, rather
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than for transfonzations of itself. Only the last definition is useful, in

the sense of fitting into the abstract framwrk.

T'o see this, all we need to verify is that random measures on an arbitrary

Euclidean rectangle A may be regarded as random elements in a suitable Polish

space. For this purpose, we take S to be the set of all locally finite Borel

measures on A, and endow S iith the *-field f generated by all coordinate

mappings p--o pB, S, where B is an arbitrary Borel set in A. Then f is also

generated by the vague topology on S, and the latter is known to be Polish (cf.

Kallenberg (9) , pp. 12 and 170).

For the reasons just mentioned, we shall henceforth (except in Proposition 1)

take the notions of exchangeability, ergodicity and invariance for randor measures

to be defined with respect to the group of A-preserving transformations of [0,1]

or R+ which only permate a finite number of disjoint dyadic intervals of equal

length, in the sense described before. In particular, the terms 'ergodic' and

'extreme' may then be taken as synonymous.

As already mentioned, the proofs of our main results require som

representation formilas and other structural properties in the one-dimensional

case, as well as for t-dinensional exchangeable arrays. These are provided in

Sections 3 and 4, respectively. In Section 2, ie collect a variety of abstract

results, including a general ergodicity criterion, and a device for automatic

extension of most representation forrulas frcn the ergodic to the general case.

?fter this preparation, the main results will be proved in Sections 5-7. The

final Section 8 is devoted to the before-mentioned ccmari-on between the

different notions of exchangeability, to criteria for convergence of the series

in the main representation formulas, and to a discussion of same related questions

of uniqueness.

Several auxiliary results in this paper may be of som independent interest,

in xhich case their statements are often slightly rore qeneral than actuall,,

needed for the main proofs. In fact, the author's main motivation for the present
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wrk was to develop sore general techniques and a deeper understanding within

the area of multivariate exchangeability, rather than just provide some rigorous

proofs of certain representation fornmulas, whose statements may be intuitively

rather obvious anyway.
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2. SME ABSTJPA1' LEMS

Our aim in this section is to establish some abstract results of varying

difficulty which will be needed to prove the main results of the paper. Some

of the results in this section may be of independent interest, such as Lewa 3

which yields an automatic extension of our representation formulas from the

extreme to the general case, and Lems 4-5 where we state sane useful conditions

for ergodicity and propose a related approach to the construction of directing r.e. 's.

Our first result is the simple 'coupling' Lema 1.1 from Kallenberg (1 0 ) ,

which we restate here for the reader's convenience.

Lewm 1. Let 4 and I be r.e. s in some Polish spaces Sand T, such that
d_ f (j) for soe measurable mapping f: T-O.S. Then there exists some measurable

a g: S X [0,l]--*T, such that whenever -0 is a U(0,1) r.v. independent of ,

the r.e. )I=g(9,A) satisfies q=f(?I') a.s. and i' d

A typical application of this result is to obtain a.s. representations of

random elements from their distributional properties. For example, a random

masure with the same distribution as t in (1.1) has itself an a.s. representation

of this form, on a suitable extension of the original probability space.

The representations of the extreme distributions in Theorems 1 and 2 are

both parametric, in the sense that the general ergodic distribution is specified

by an array of real parameters. The situation in Theorems 3-5 appears to be very

different, since here even measurable functions appear as parameters. (This is

also true for the basic representations of Aldous (1,2) and Hoover (5,6) for

exchangeable arrays.) However, we shall show that the latter representations

may be restated in parametric form, which is useful for proving ergodicity

criteria and extensions to the non-ergodic case (cf. Kallenber()1 1 )

Lmma 2. Given a d-finite measure space (SP) and a Polish space T, there

exists a measurable mapping F: [0, 1] 9 S-- T, suoh that any measurable function

f: S-- T agrees a.e. with F(c,o) for some c40,lJ.
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Proof. By a Borel isorphism, we may reduce to the case when T is a Borel

subset of [0,11. Next we fix a oonplete orthnormal s T1'2'" in L2 (Sp)

with arbitrarily specified versions, and define a jointly measurable version

of the function
h h(a, s) akTk(S) , a--(ak)Cel2 Ss

k=I

by taking the limit of partial ms along the index sequence

=inf r*N; 7 a2 . 2nJ. n*N,
brot

"n k k

%henever that sequence converges, and putting h(a,s)--0 on the exceptional j-

nullset. For any feL2 (SP), there is then an a e with h(a,.)=f a.e. P, obtained

by taking ak= fkfdp for each k. In particular, h(a,.)*T a.e. when f is T-valued,

so by an obvious modification of h, we get a measurable function H: e2x S-'- T

with the same property as h. Next note that t 2 is Borel isomrphic to a Borel

subset of [0,1). Hence there exists a measurable mapping g of t0,1) onto A2 ,

and it remains to take F(c,.)=H(g(c),-) for all c*E0,13.

The last lemma will now be used to prove a generalized version of Lerea 2.2

in Kallenberg (lI ), which is going to be our mnin tool for extending representation

fornmlas from the ergodic to the general case.

Lmma 3. Fix four Polish spaces S, T, U, V, a measurable mapping F: TX U-9. V,

and ae r.e.'s T in T and cIa2,... in S. Let9 denote the class of measurable

functions from S to U, and consider a r.e. in V and scre 0:-field 7c t, sud

thatth t P[ge .171 ttP(F(,, (g. o )))' q*91 .. (2.)

Then there exist sane measurable function G: [0,1] XIS-P U, sane U(0,1) r.v. et,

and sce indeeet randz seauene (,,oV, ,...) = (,a,a,...), suh that

• ', (G( ,o!))) a.s. (2.2)

III

Proof. Define an S the probability measure r By Lah 2, there

exists same measurable function H: to, 1] K S-, U, such that every geg agrees



a.e. p with H(c,°) for e ce[0,1]. Hence g(.)uIH(c,'.) a.s. for each j, so
) 3

(2.1) yields
,'f.-- 17.1t €((I (,,(c.(Y)))-l, cf.0,V.g)

By lanua 2.2 in Kallenberg there exist soe 7-veasurable r.v. W in [0,1]

and an indepednt ranom sequence (%',0.,0s,...) - (Td 1 , 2 ,...), such that
T,= F (T (H( ,OD ) ) a...

W p(KO), he 0 is U(0,1) while p is the inverse distribution function

of , and by Lmm 1 we may then choose at u (0,1) and independent of T' and (0!),
3

such that rtp (,x) a. s. But then

a.s.,

and (2.2) follows if we take G(a,.)=H(p(a),-). ti

The next result will be our imain tool to characterize extremality. iough

stated formally for representations of parametric type, it extends imnediately,

via lana 2, to the wider class of representations containing arbitrary

nmeasurable functions.

Lmms 4. Fix four Polish spaces S,T,U,V, a measurable mappin f: TXU- S,

a r.e. - in U, and an independent U(0,1) r.v. I. IetAfdenote the set of all
convex onzbinations of measures -1 Alt t-f(t.4) t*. M e mt is

extreme in M, Provi&d there exist s up "asurable xnamin s g: S-- V and h:

T-j, V, such that

go t h(t) a.s., tT, (2.3)

h(s)-h(t) :0, m ~t,  s,tC-T. (2.4)

7his holds in particular, if there exists some measurable Fp F: S X0, 1J -+ S,

such t t andt =F(ft,y) are i.i.d. for eTMr t*T.

Proof. Fix ttT, and assum that mtelm.(do) for some probability neasure

on T. 'en Ct 9- C, where r is a r.e. in T which is ndependent of with

distribution . If f and g exist with the stated properties, it follows from
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(2.3) and Fubini's theorem that h(t)=h(?) a.s., so mt~ma.s. by (2.4), which

means that m f-,t for stT a.e. F. Hence mt is extreme.

Assuming instead that F exists with the stated properties, we define

g(s)=P(F(s,T)) - , sW; h(t) Mt, tT. (2.5)

Then (2.4) is trivially true, while (2.3) is obtained through the chain of

a.s. equalities

where the first relation holds by (2.4), Fubini's theoren, and the fact that

tand are independent. 13

A related problem of general inportance (cf. Kallenberc (7,9,11)) is to find

a so called di r.e. T associated with an exchangeable r.e. t, with the

properties that is a.s. C-measurable and invariant, and such that the

distributions of a and? determine each other uniquely. Here such an object

will be obtained, under the hypotheses of Immaim 4. The result applies immediately

to most representations in this paper.

Limms 5. Assnume in Lm 4 that o4K consists of all exchangeable distributions

with respect to some countable group ? of measurable transformations of S, and

let g and h be such as stated. 7hen every T-e~chanteable r.e. t in S admits an

a.s. representation g-f(T,7 ) for sae r.e. I CA in U and some independent r.e.

T in T. Moreover, ?(=h(r) is a directing r.e. for t.

Proof. By Lemmm 2.2 in Kallenberg (11)', the first statement is even true

with TC a E71 -measurable r.e., where I denotes the 7-invariant a-field in S.

By (2.3) and Fubini's theorem, we get for any'r

P = h(r) = g() a.s., (2.6)

which shos that ? is a.s. independent of the choice of T. Choosing T to be E-iv_

measurable, we get a -17-measurable version of f, which is clearly invariant.
From (2.6) it is further seen that the distribution of 4 determines that

of F. Tb prov the reverse statement, let 4' be another 7-exchangeable r.e.,
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say with a.s. representation %'=f(C', 1 '), and assue that h(z) h(-r'). Then

there exists by Lemm 1 s r. r.e. t" ' with hd")4h() a.s. SO Mr -i dl

by (2.4), and it follow' by Pwiinis th~rm that p = = s.s = m ,Pq-

The remainder of this section is devoted to scme rather technical results,

which will be of frequent use in subsequent sections.

Lamm 6. Let S and S' be t, measurable spaces, endmmi with groups 7 and 7'

of measurable transfoniutions, and fix a measurable mapping f: S---S' with

{ f e T; T067-1 IT' - f; T'e 71. (2.7)
Further assume that , is a 7T-e2, -eable Mergodicl r.e. in S. Then the r.e.

f. inS'I is?7' ±Tngeabe J7'-2r22 ..

Proof. Assure that 4 is T-exchangdeable, fix T'T', and choose T7' with

f.TT'af. Then
d

which s1uws that f. isr'-ehangeable.

Next we note that the invariant a-fields 7 and 7' in S and S' satisfy

f 71 C . In fact, letting I'e 7' and TS" be arbitrary, and choosing T'4'

with T'-f=f.T, we get T f- I'=f-1  '- I'=f-iI'. If P is -ergodic, we hence obtain

P{f-ov)' = {tef lit] = 0 or 1, Ile 7'

which shows that f e is 7"-ergodic. 12

lamma 7. Fix three measurable spaces s, S' and S", endowed with classes

T 7' and7" of measurable transfornations, and a nmeasurable mapi f: S'x S"-. S.

Assume that, for every Te 7, there exist some T'1 ' and sae family Te r", xeS',

such that TY is product measurable in (x,y) eS' X S", and moreover

T.f(x,y) = f(T'x, Ty), xtS', yeS". (2.8)

Let the r.e.'s I in S' and i in S" be independent and exchangeable with respect

to' and 7-", -sactively. Then f(e,n) isa ±- mngeable r.e. in S.
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Proof. Fix T67, and choose T'rzT' and T"07". xIS', with the stated
x

properties. Then Tof(,)-fk(T'°t, Ti°l), so it is enough to show for any bounded

teasurable function g: S'.% S"-' R that Bg(T'- , Tiq) =E ,i) . To see this, let

and V denote the distributions of f andil. Using Fubini's theorem and the

independence and exchangeability of % and 1, we get

Eg(T'eg, T"91) = fpcdxi5g(Tx,T )Ody) = Jp(dx)Jg(T'x,y) V(dy)

= V(dy)Jg(T'xy)1(dx) = J(dy)fg(x,y)F(dx) = E9RJ

Before stating the next tw results, we need to introduce the notions of

separate or joint exchangeability and ergodicity for random elements in product

spaces. (The double meaning of these terms in the context of random arrays or

measures should cause no confusion.) Thus assume that 4= (9, ... In) is a r.e.

in S 1 X... X Sn , where each Sk is equipped with a class k of teasurable

transformations. Then t is said to be separately exchangeable or ergodic, if it

is exchangeable or ergodic with respect to the class of transformations 7i ) ... x 7n

+ x... XT ;Tle7j ..... Tne5 . The notions of joint exchangeability or ergocicity

are only defined when S . =. S n and 7= ...=nT-Z' in which case the generating

class of transformations is 7 4(n) {T X ... x T; T*7J.

The two results we need involving these notions may now be stated. Their

proofs are easy, so we shall only prove the second one.

LAMM S. For k%{,... ,nI, let Skbe a Polish space endowed with a

countable groue 7 of measurable transformations and the associated invariant

d-field a n ad let f- , 9n) be a r.e. in Si( ...xSn. Then k is separately

exchangeable, iff each cmonent is conditionally exchangeable, given all the

others, and also iff the f are conditionally independent and ergodic exchangeable,

given 4113- ..V4 n In that case, tis conditionally independent of

1*...I) gie C1l71, so the tkare m~utually independent when at least n-l

of them are ergodic. They are further all ergodic, iff f is so.
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LeImm 9. Fix a Polish space S, emrdymd with a oountable group 7 of measurable

transformations. Let ( and be tw r.e. Is in S, such that 4 is T-exkanqbe,

while I is a.s. cx ditionally T-erm,7nqeile, given 5, and asume that the pair

(tj) is jointly 7 "-jE2iv. Then 4 and are indepr dent ergodic T-exckharable.

Proof. The exchangeability of q follows through averaging from the

orresponding Conditional property. Next note that, if I C S is MBasurable

invariant, then IXS and S xI are both 74 2)-invariant, so the joint ergodicity

of (4,?') inplies PtIj-P{(,})*IXS}=O or 1, and similarly for P{'14I1, which

shows that 4 andl) are ergodic. In particular, the distribution of I is extreme

excangeable, so the decuposition Pt = E P[v.ln nust be trivial, which means

that P&t-j =Pj a.s. Hec k and Iare independent. 13

The last result in this section will only be needed in Section 6, in order

to characterize extreuility for exchangeable ranko measures on [0,1] X R, by

means of the last condition in Lemma 4. Recall that a kernel on a measurable

space (S,f) is a mapping K: Sxf-w R+, such that K(s,. ) is a measure for each

seS, while K(- ,B) is f-umasuable for each B..

Lemma 10. Fix three Polish spaces S, U, V, and an index set T, some measurable

aings ft: UcV-.PS, teT, two independent r.e.'s, W in U and Iin V, and an

independent U(0,1) r.v. V. Put

4t = ft ('6)  t*T, (2.9)

and assume that

P &te I lC = K(ft; e) a. s. tT, (2.10)

for soe kernel K on S. Then there exist sre measurable mapping g: S x [0, 1] -* S,

and for each t*T some r.e. it_ in endent of (Re,. such that

S- g(t,) = ft(6,1t ) a.s.. t*T. (2.11)

Proof. Let us first reduce the discussion, through a Borel isomrphism, to

the case when S=R. Then (2.10) ray be stated in the form

'I __,..... -..................
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,1t(a,x) a P[texI.]-XC(t,(--h,xJ) _G(4,x), xGR, a.s., tET, (2.12)

%bere G and the Ht are distribution functions in the last argument. Since G and

the Ht are clearly product neasurable, so are the corresponding right-continuous

inverses g and ht, and (2.12) shows that the r.e. 's gig(t, Q) satisfy

= ht(9,,) a.s., t*T. (2.13)

Since st and T are independent, (2.13) yields by the definition of ht

(4 s teT. (2.14)

By (2.9), thisis also true wihre pleced by ft(at,1), tre I I and

indepewdent of (a,1,) ), and with this change, (2.13) shows that 1 becomes

independent of both sides of (2.14), so we get

(qW,1) d (ft ttT.

Applying Leiuu 1 for each t, we conclude that there exist some random triples

,X 9p teCT (2.15)
satisfying

= (t ) a.s., t*T.

In particular, e and a. s., so (2.11) olds with i- 9. Mreover, (2.15)

shows that It is independent of (ej), and hence also of (t,'). 1
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3. SCI4E CNIE- DDIS2PNL W3TS

The proofs of our main theorem depend on some results about random measures on

a product space, which are exchangeable in one coordinate only. In particular,

the first three lemmas of this section provide the basic characterizations of

such random measures. These results generalize the characterizations of random

measures on [0,13 or R+, given in Kallenberg (7 9 ) , and could in fact have been

derived from the latter. However, we prefer to prove thun afresh, using

a new and nore elemntary method. Also of saw independent interest are the

next two results, Lomas 14-15, which relate the exchangeability of a

marked point process to properties of the associated sequences of random times

and marks. The remaining results of this section are more technical, and tailored

to fit our special needs in the subsequent sections.

For the basic characterizations, we shall need to consider random measures

Fon prduct spaces Sof the fo [0,lJ XK or R+ xK, whereK is Polish. We shall

then assume that K admits a oczplete metrization, such that kB is a finite r.v.

for every (etrically) bounded Borel set B cS. Such a random measure 4 is said

to be exdanxeable, if f-1 d C for all transformations f in the first coordinate

which preserve Lebesque measure A, or equivalently, for the subclass of

transformations which permute finitely many disjoint dyadic intervals of equal

lenqth. As explained in Section 1, we shall carry out all proofs under the second

and formally weaker definition. The equivalence of the boo definitions will then

follow from the form of the representations. In particular, the notions of

invariance and ergodicity are tacitly assumed to be defined with respect to the

smaller class of transformations.

By a K9,arked roint process on [0,1] or R+ we shall mean an integer valued

random measue % on 1O,]XK or R+X K, respectively, such that ( {tj x K) =O or 1

for all t. By analogy, we may further say that t is a K-narked diffuse randam

measure on t0,i] or R+, if it is a random measure on the corresponding product

space satisfying k({t)KK)wO. In either case, f is said to have in2ependent
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incremnts, if kBI , ... ,EB are independent for any collection of Borel sets

Bit ... ,BM with disjoint projections on [0,i] or R+.

la u 11. Fix a Polish space K, and let I be a K-arrked diffuse random

measure on [0,11 oR+ .7en is le, iff a.s. for an ran

measure n on K. In that case, is extreme iff i is a.s. non-random, i.e. iff

has i2gendent iremeints.

Proof. Let t be exchangeable. In order to prove that t has the stated form,

we may clearly assume that t is defined on CO,1]x K. Then the projection 1
4([0,l x. ) onto K is invariant, so the exchangeability of F is preserved under

onditioning on, and we my assume by Lmm 3 that I is non-ran . By a

monotone class argument, it is then enou~jh to show, for any ounded Borel set

BcK, that 4(.XB)=(B)A a.s., which reduces the discussion to the case of diffuse

random measures 4 an [ 0,13 with fixed total mass m. In that case, the

excharxJeability of C inplies E"m 7. Mreover, the product nmumnt E (4B) (tC) for

disjoint dyadic intervals B,Cc[O,1j is seen to depend on)kB andAC only, so for

dyadic rectangles A outside the diagonal D we get

E g2A = c 1 A, (3.1)

for san constant c>0. 7he last relation extends by a monotone class argument

to arbitrary Borel sets AC0,132 \D, and since t2D=0 when 4 is diffuse, (3.1)

must in fact be true for arbitrary Ac[0,l 2 . In particular, we get c=qi2 by taking

A=t,1 2 . But then we get for A of the form B2 that E(B) 2 =m (B) 2, so Var(%B)=0,

and therefore %B-uAB a.s. Hence t=mA a.s., as asserted. conversely, any random

measure of the form AxI is invariant and hence trivially exchangeable. The last

assertion follows easily from Lenma 4, plus the fact that a random variable is

independent of itself iff it is a.s. non-randbm.

Leaur 12. Fix a Polish space K, and let be a K-narked point process on

[O,1]. lben is exhAngeable, iff

I a.s., (3.2)

Wj'b'jPj
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for sane N-valued r.v. V, ow K-valued r.e. 's j J 6F, and some independent

sequence of indepdent U(,) r.v.'s T, t2 ... Moreover, the distributions of

f. m. /(I-I determine each other uniquelY, and E is extreme iff . is a.s.

non-random, in %bid case V and the Pj nay be chosen to be constants.

Proof. Let t be exchangeable. Since the projection P = ([0,1]X.) is invariant,

the exhangeability of f is preserved under oonditioning on P , so we may assume

that ( is non-random. let b,b 2 ,... be the atom positions of P, and write ,o { k

and k=5(.X{b ). Fixing the indices jl,...,n, it is clear that the product

mom~ent E (k, BQ.] .B i ) for disjoint dyadic intervals Bl,..,B n C [0,1] will

only depend on ,I,..., Bn Hence we get by linearity, for any dyadic rectangle

A C [oI n outside the unio Dn of all diagonal sets,

E( j. - (3.3)

where cn is a onstant depending on j.'"" ' By a monotone class a t,

(3.3) extends to arbitrary Sorel sets AD c . No (3.3) is equivalent to
n X .. tn d  n +...+ndE( I ... d )A = c' -A1A, (3.4)

with a constant c'._O depending on nl,...,nd, and (3.4) extends to arbitrary

Borel sets ACDCnl ... XDC, since t'*"'4d have no atom sites in common. Taking

A=D K.. • , we get in particular
n, n d d - d

C T (N n 2 r _ ( N 1... N-nk+l). (3.5)
k-1 nk k=1

Next we note that (3.4) remains valid with c' as in (3.5), if we replace

the tk by independent sample proces s k (cf. Kallenber (9)) with the

n . nd n1  nd C X
E( -- d )A = E(7iX -'xd )A, AC ... XD,

which exteds to arbitrary Bor sets AC [0,1 , s e e an" Ik

are simple point processes (cf. Krickeberg (14)). Hence the secuences (4) and

(7k) have the awe product moment measures of all orders, and since each t and Ik
is bounded by a oonstant, the joint distributions must be the same. Thus has
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the same distribution as the sum in (3.2), and the a.s. representation then

follows by Lemma 1.

Conversely, any point process of the form (3.2) is clearly exchangeable.

The remining statements follow easily from Iawmas 4 and 5.

7b state the next result, recall that if t and are random measures on

soae Polish space S, then 4 is said to be a Cox process directed by 1, if

conditionally on 1, 4 is a.s. a Poisson process on S with intensity measure

(cf. Kallemberg(9) ). In this case, the distributions of k and - are known to
determine each other uniquely. Note also that, if ' d then Imna 1 yields

the existence of s! Pi' -1, such that 4' is a Cox process directed by 1'.

Lemma 13. Fix a Polish space K, and let # be a K-tarked point process on R+.

Then t is exchangable, if f there exists some random measure on K, such that

C is a COx process directed by A In that case, the distributions of t and

determine each other uniquely, and is extrme iff j is a.s. non-random, which

hapens iff 4 has independent increments.
Proof. Let 4 be exchangeable. Then Lemma 12 applies to the restrictions (t

of to the sets [O,tj xK, so writing Pt7=V(O,tJ A-~), it is clear thatt3t is a

p-thinning of t/p for arbitrary t-20 and pe(0,l). Hence eachfL is a Cbx process

(cf. Corollary 8.5 in Kalenberg(9)), and LImm 12 then shows that the same

thing is true for each Yt' with a directing random measure of the form Xx.

But then is - ?t for any s,t O, so J itself must be a Cox process directed by

some random measure Axn with '- 'l" Since a version of-i is measurably

determined by 4 through the law of larqe numbers, the reaining assertions follow

easily by Lome 4 and Kobnixrov's 0-1 law.

The next leve uses the notion of separate exchangeability for random

elements in product spaces, introduced in Section 2.
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Lama 14. Fix a Polish space K, and consider a K-marked point process g on

[0,1J or R, of the "vz
n

= S r ,(3.6)
j=1 'rjiS

where n*R is fixed, while T, 2... Wite 7r I(- X K) and 09= (01 "'")" n

is exchangeable iff the pair (7,a) is separately exchanqeable, and in that case,

* is ergodic if f ) and a are independent and ergodic.

Proof. Let us first take 4 to be defined on R+, so that n= o. Assume that

and K are independent and ergodic exchangeable. 7hen I is homrgeneous Poisson

by Lau 13, while o is i.i.d., so writing c=E[0,I)1] , it i t

k is Poisson with intensity measure c0 x i, and hence ergodic exchangeable by

LeIma 13. Conversely, if t is ergodic exchangeable, it nust be Poisson with an

intensity measure of the form c i p, with c >0 and y a probability measure on K.

Since I and W are measurable functions of 4, their joint distribution is

determined by that of 4, and hence must be the same as before. Thus I and oc are

independent ergodic exchangeable in this case.

If t is instead defined on [0,1J, then n -Po by Lemma 12, so assuming I and

o to be independent exchangeable, it may be seen directly from (3.6) that even

C is exchangeable. In this case is automatically ergodic, and if even a is

assumed to be ergodic, then #([0,1]J( . )=YS. is a.s. non-random, so t will be

ergodic by Lemma 12. Cbnversely, the distribution of an ergodic exchangeable

process 4 is determined by the non-rando peasure P=4([0,1J( o.) on K, and since

every 3 can be written as for soue ergodic exchangeable seuence .,/In)

in K, the previous uniqueness argument shows that i and a( are again independent

ergodic exchangeable.

In both cases, it follows by Lmmm 8 that k is erqodic exchangeable, iff

(1A) is separately ergodic exchangeable. Hence we obtain the first assertion

by conditioning on the invariant a--fields for 4 and (7,), respectively.
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We shall need the following simple corollary:

Lmm 15. Let Te,..., n  independent U(0,1) r.v.'s, write 1=1 , and

define X=(il 1 ... , n) as the a.s. unique permutation of (l,...,n), such that

TMl . .. n. Iand . are independent ergodic exchangeable.

Proof. Write c.=T, and note that the marked point process

n n

i-- i' j=l j J

is ergodic exchangeable on [0,lJ. Then apply Lona 14.

The remainder of this section is devoted to a study of random measures

on R+X[ 0,1j which are exchanqeable along R+, i.e. such that h d for every

function h of the form h(x,y)=f(x), where f is a measure preserving transformation

of R,. The general representation of such random measures t can be easily deduced

from Lemmas 11 and 13. However, we shall only concentrate on certain specific

features, which will be important for the proofs of Theorers 3-5.

As before, we shall in fact assume in the proofs that the measure preserving

transformations f above are of the special type which permute finitely many

disjoint dyadic intervals of equal length. Note in particular that ergodicity

is always defined with respect to this restricted class of transformations. Let

us further agree to denote by 4[f0,l the Polish space of finite measures on

[0,1), and to write + for the function l-ex on R,.

Lea 16. A random measure t on R+ x [0,1] is ergodic exchangeable along R+,
iff t has stationary independent increments along R+. In that case, define

ct =-E*- (oJ)((tJ), teCO,1]. (3.7)

Then the sets T,={t[e0,J1 ; ct,} are finite for all E:,.0, so To is countable.

Dbreover, E is a.s. such that

= 0, Cks'-C5", te[0,l3'%T 0 * (3.8)

Proof. Assume t to be ergodic exchangeable, define M=[s!_0; e( sjx [0,11) >tr

and let 5 denote the restriction of 4 to Mc x [0,1]. Then is again ergodic
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exchangeable by Immm 6, and since (. k [0,11) is diffuse, Iamma 11 shows that

= p p a.s., for sae fixed measure p on 0,:3. Let us further define a point

process n on R+ with marks in &NC0,1]\ fo}, by putting

-IM s'4 l
Then even is ergodic exchangeable by lawsa 6, so Unm 13 shows that 1I is

stationary Poisson. Froin the structure of 4 and 1, it is clear that F has stationary

independent increments along R+. Conversely, any such random measure is trivially

exchangeable, and the ergodicity of follows easily from the Hewitt-Savage

0-1 law.

Next we write tt-(tO,(1t X ftJ) and q7+-1 (ct)' for t1IJ,1. If ct ; E 0'

we get by Chebyshev's inequality and (3.7),

Pflkf4j Pf1t~aqtJ .!t 1 - exp(%t/2)Eexp(-k) = I(%/2) > 4#(C/2),

so if TE contains an infinite sequence t , t2 ,..., we get by Fatou's lemma

0 = pfk[o'lI 2 _Q.4~t pf2ft :.E i.o.} limwup, Pf2 .4 ~-}E /2) 3b 0,
n n-vo n-

which is impossible and shows that TE is finite.

Tb prove the last assertion, define

As = {te[0,1] NTo - ([0,s](JtJ) - 0J, s_'.

1,e then have to prove, for any fixed rational s,0, that 4((s,w)X A)=O a.s.

Since 4 has independent increments, this follows formally by the computation

E ((sft) XA) = E Z (s,,) X (tJ) = 0.
teAs

To justify the use of Fubini's theorem in the first step, recall that there

exist Ae ra variables V in N and " r ... in [0,13, all measurable with

respect to t([0,sjx -), such that A =Nr; k-cv) (cf. Le'vn 2.3 in Kallenberg(9~).

It remains to notice that p{sJ is jointly measurable in (ps)C-A[0,1J x [0,i],

as nay be seen by a simpvle approximation argument.

Lemma 17 Let f, be a random measure on R X (0,1) which is exchangeable

alon R+, define
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1 12

?t = lipsup n l.( k-l~k] X tj). ,t[O. ]. (3.9)

71'2 in [0, 1], satisyin ?'l 2. -.. * 0 a.S.o an suc tht-Ci=r#O

ilies ifj. Moreover, F is a.s. such that

t{(s't)l tf.,t)l = 0, 0Us'ts", t*[0,1j\M. (3.10)

Proof. If t is ergodic, the law of large numbers yields ptct a.s. for

each te[O,j, where ct is given by (3.7), and the last statement of Lerma 16

shows that the exceptional P-nullset nay be taken to be independent of t. In

particular, the set ftEO,1]; pt tj is a.s. finite for every ->0.

In the general case, we note that M is contained in the set

M' = * [0, 1]; (R+ K{t}) O}0 U (tC- O,I 11;4([O, nj x(t}) -3o}.

n=l
By L ma 2.3 in Kalleberg (9 ) , there exist 4-e distinct k-measurable r.v. 's

Tl,02,... in [0, 1, such that M'C: f. , and we note that even the quantities

become 4-casurable. It is now obvious how to define the Tj recursively,

by suitable ordering of the a3 according to the sizes of

The last assertion is clearly equivalent to
Slf 0- 4(0.' xi})((S]sx{cr) = 0, W+, jeN.

But this holds in the ergodic case by LIa 16, and in general it then follows

by conditioning on the invariant d-field.

We finally record a simple result, stated in terms of the shift operators

et along R+, defined in an obvious way on the class of measures on RM [o,j .

Lamma 18. Let the random measure on R+ X [0, 1 have conditionally stationary

independent increments along R+, given some 0-field 9, and fix arbitrary

measurable mappings f: R, x L0,]-- R+ and h: R+-. R+. Then

E~ (fl ] Ji 1 h( tf)a.s. (.1nI

n-+op k-l
Proof. If =fA,0J, then (3.11) holds by the ergodic theoren and Y omogorov's

0-i law. In general, it then follows by conditioning on (.
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4. NOSM EXCA PAELE ArVaS

Our aim in this section in to prove a representation theorem for certain

sequences of separately or jointly exchangeable arrays, which will be needed

for the proofs of heorems 4 and 5 in Section 7.

T'l prepare for this, recall fron Aldous (1'2 and Hoover (5 6) (cf. Kallenberg (II )

that an array X=(Xij; i,j*N)" of random vectors in Rd is separately ergodic

exchangeable (under finite pemtations of indices), iff it admits a representation

Xij = f(i,rpjTij) a.s., i,j4N, (4.1)

in terms of some measurable function f: t0, 1] _. Rd and soe set of indeperdent

U(0,1) r.v.'s 4.,1J P ij, i,j*N. Similarly, X is jointly ergodic exchangeable,

iff (4. 1) holds with ej(3t PiY>= It and E=0, for sare function f as above andJ 1 11-

am P independent U(0,1) r.v.'s a(i and 'licj. In both cases, we shall call

the f in (4.1) a representing function for X.

Let us next consider a sequence of arrays X(n) with R 3-valued entries of

the special form
x~n) = -( (n) _ ( n) _(n)
ij ij ' ' Vj i), i,jeN, (4.2)

and let AircA 2c... and B1C B2C... be Borel sets in R. We shall say that the

X(n) are nested with respect to the sequences (An) and (Bn), if X(M ) can be

obtained from X(n) for any mc n by selection of all ram and columns with
u(n) eM and V~n)eBm . Formally,

j m

i) = xj , (4.3)

%-*ere X.=, -i ink,.,, n)k
:; ml,(Ujn)=i}, 1q = infjkeN; k:J V ij fN 44j=1 m J

It is easily verified that, if X(n) is separately ergodic exchangeable, then

so is X(m) for each mcn. In this case, the probability that a fixed raw or

Column of X (n) will be included in x(V is given by ad/an pr bn/bn, respectively,

where the sequences aYca 2 .c. and 1=bc0 2 ... are defined by
-M (n)' l rn

a'n -PJU eA1j bnl =p{V) .B1 }F r*N. (4.5)
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Similar statemnts hold for jointly ergodic exchangeable arrays, with R2-valued

entries of the form
x(n) . (n) (n)iij u ), i,je1, (4.6)

which are assuzned to be nested with respect to a single sequence of Borel sets

A1c A2 C... in R. Thus we take in this case v!n)=Un) and Bn=An , so that != XC.
1 n 1 1

and b =-a

In both cases it is clear that, if fn is a representing function for X(n )

and if m-en, then the function

fm(XyZ) - f ((am/%)x, (b./bn)Y, z) xy z*[0,1, (4.7)

is a representing function for X (M). This sugg.its that there should exist a
2 3 fr2(nfunction f: R+ [0,]-- R [or R2J, such that the arrays X(n) have representing

functions
fn(xyz) - f(anx, bnY, z), x,y,ze.[O,.], n*N. (4.8)

Lemm 19. Consider a sequence of separately ercidic: exchangeable arrays X (n)

as in (4.2), which are nested with respect to some seauences (A) and (Bn) of

Borel sets in R, and define the sequences (a ) and (bn ) by (4.5). Then there

exists a measurable function f: ;l x[0,1]-_* R3 , such that the arrays X(n) have

representing functions fn given by (4.8). The corresponding statement holds for

nested sequences of jointly ergodic exchangeable arrays of the form (4.6).

Unfortunately, no simple proof of this result seem to exist. One might

try to construct a sequence of representing functions f by successive extensions,n

such that (4.7) becumes fulfilled in each step. It turns out, however, that no

extension fn+l of a given representing function fn for X (n) with the desired

properties need to exist. Relying on Hoover's equivalence criterion (5) for the

case of a fixed array (cf. Kallenber (12 ) and Prooosition 3 below), one might

then try a modified extension procedure, 'where tn randomization variables are
[,2n+l Sneti

added in each step, so that fn becomes a function on L0,I] 2 . Since this beccmes

rather complicated, we prefer a direct approach, mimicking the standard proofs

of (4.1), as presented in Aldous (1 , 2 ) and Kallenbera. (1 1 ) .
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Proof. -We shall only consider the separately exchangeable case, the joint case

being similar. By the Daniell-Kolnogorov theorem, we may extend each X(n) to an
2e mngeable array indexed by Z , and by another application of the sage theorem,

we nay do this simultaneously for all n, in such a way that the extended secuence

X= (X(n)I becmres nested in the obvious sense. tet X- denote the restriction of

X to the index set Z2-f(ijI; i,j<O,. Let us further write X!n) ; j=Oj,.(m wit
ineN, and for non, let X(,n) denote the subsequence of elements X with

()i (m )()1)
V m C-  If instead = n, we put X - where 1C is given by (4.4). Finally(.n (I~ (ista e n ) puX(re n) X n

put (m) . (X (m, n*N) and ( The arrays (0i i ; ieN). 3are

defined in the sane way, but with the roles of indices i and j interchanged.

Fixing inn and letting the (. and i' be given by (4.4), it is clear from the

definitions that

(m) ((n) () ()1t =iI D scj P l. 49

The argument in Ao (1,2) aplies to the array (Xi, (m) ( j) (m), X-;

i,j N) for fixed m4M, and sowms that the seauences at(m) and P(M) are conditionally
independet and i.i.d., given X-, that the xKm ) are conditionally independent,ii

given (X-, (m, (i)), and that

p[x! e.JX m( = axm),in),p] ();-) a.s., i,j-N, (4.10)

for Saie kernel K independent of i and J. %, can actually choose K to be
m i

independent even of m. To see this, it is enough to shmr, for fixed nsm and

i,jeN, that

PLim '() -j ( = Kn(X-, 6m) ( () a.s., (4.11)

which by (4.4) and (4.9) is equvalent to
'P [ (n) i[- (n) (n) nX ()_n

~ ~ p~'! I = (X-, *,(n) (n)) ~.(.2
Xi 1 1 P 1

Nw (4.12)is in fact tzue with Xi and replaced by any finite stopping times
Rand x' with respect to the sequences n) , respectively, as my be

seen if we replace (4.12)by its integrated version, split each side into a double

aum, corresponding to the partition of A. into sets f(X,X')=(k,k')J, ard eIr]y
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Xelatin (4.10) tenmeise.

By a standard procedure, we may next construct a measurable function

F: RK"3cp!*o,,]-. R3, where P? sybolizes the state spaces of th arraysx-, !M) a (M) 1 .v
and Pj , such that for any U(0,1) r.v.

P-F(x~y~z)e.} K(x,y,zi.) %'(xY-ZI.) (4.13)

By Lama 1, relations (4.10) and (4.13), and the conritional irdeperdence of the X
11

there exist for each w*N ae independent U(0,1) r.v. 's jr (, independent even

of X-, (m) and P(m), suoh that
x(M) = (X-, (M) (m) (4.14)
ij= F(X ki I P ' r 'j) a.s., i,j,N. (4.14)

Since the arrays X (n ) are erodic by hypothesis, their restrictions to N2

are independent of X, so conditioning on X- leaves their joint distribution

invariant. Note also that the ,%. ri.eun conditionally independent U(0,1) for

fixed m, independently of c(O) and p(m). B1 Iauma 1, we may then redefine the

quantities on the right of(4.14),such that the joint distribution of all r.e. 's

in (4.14)will agree with m fixed conditional distribution with the stated

properties. Thus w may henceforth take X- to be a constant array, and assume

for each m*N that the semences OC(m) and (m) are i.i.d. and mutually independent,

while the are independent U(0,1) and independent also ofee(M ) and m)iJ
Note that (4.14) now reduces to

X!m) = f (iM) _(M) On)
- ' i j # Iij ) a.s., i,j,meN, (4.15)

for some measurable function f: RxRoo P[0,1]--1&R3 .

Frani the definitions of (M) and W , it is clear that
U (M) (-.) ( j -2 ~ , N4.16)

for suitable projections Ir ,T: R- R. Defining

A! 1el1 A., B' -ICl ipj' (4.17)

we may then rewrite (4.4) in the form
k k

Xi=inffkeN; j11 (eO )=i1, VI4 = infktN; ' IBI( A=> iN. (4.18)
Letting Nand Ym denote the distributions of a,*and respectively, and
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using the strong Markov propety for i.i.d. sequemce., we may onalude from (4.9)

and (4.18) that

Phi" IAJ Vm- Vm J. IBO], m4n. (4.19)

Hence there exist 1, 1 cf-finite measues F and 0 on R , such that

Fn" JA'l], Yn - ['*3 N. (4.20)
by (4.5), (4.16) and (4.17), we may noimulize V and V in such a way that

p(N , -n (BA) bN, r*N. (4.21)

Imbedding R* into R and using (4.20) and (4.21), we may easily construct a

pair of measurable mappings g,h: R+--* R , satisfying

"Afse0,an1; g(s)*.J = a.In, X{tse O,bn]; h(s).-) =bnln, ne,. (4.22)

Hence we get, for any U(0,1) r.v. -,

g(a%4) L__f(n), h(bn#) _ i (4.23)

Using (4.15), (4.23) and Lamm 1, we ay conclude that X(n ) has representing

function
f (x,y,z) = f(qg(a n), h(bW), z), x,y,. 0 ZIE . (4.24)

Thus the assertion of the lemma holds with f replaced by f3(g(-),h(-),.
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5. EXCHANGEMIITY IN A SQUAVE

The airi of this section is to prove the first two main theorem of the paper,

and further to derive sawe auxiliary results about exchangeable random measures

in the unit square, which will be needed in subsequent sections. Throughout

this section, the notions of exhangeakbility, invariance and ergodicity for

rando measures are defined with respect to the grops of measure preserving

transformations which permute a finite number of disjoint dyadic intervals of

equal length. For convenience, we shall often write Ar for the restriction of

a measure y to somu measurable set A, i.e. AjI (An-).

Proof of Theorem 1. Consider a separately exchangeable random measure

on [0,1] 2 . In order to prove that has a representation as in (1.1), it is

enough by Lenma 3 to assume that is ergodic, and to establish the representation

formula (1.1) with non-randnm coefficients. In that case, we define

1. = (9413,12; 4({sx [0,l])>01, M42 = fteEO,iI; 4([,l)K tJ)>0I, (5.1)

and conclude frzom lomm 6 that (MK tO,J ) is exchangeable in the first

coordinate ane ([o,lJ.KM) in the second. Hence Imm 11 yields

, ([0,.,Xt, a-s-, (5.2)

where
12 1 53

In particular,

= M= (Mj4))g a.s., (5.4)

where the coefficients on the right must be a.s. constant, say equal to c>0,

since t is erqodic. The measure c is invariant, so 4-cA2 is again ergodic

exchangeable, and we my henceforth assume that -- (Mc'K Mc) 0.

In that case, it is seen from. (5.2) that # has a representation

A, +Zfpj(. xr?) -a.s., (5.5)

for Sore -measurable r.v.'s ij,1,ipO and ci. ,c5E[O,1], i,jtN, where the latter

are a.s. distinct. If we take the sequences

rim PI Zol(j, r; +E ec., ijN, (5.6)
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to be non-decreasing, they become a.s. invariant functions of 4, and hence a.s.

non-random, since P is ergodic. 7hen so are the index sets

J j-N; rj-01, V = {JON; r ,0}. (5.7)

For definiteness, we may further assume that c % c n i4j with r.=rj100,

and similarly for the cl.

Independently of g, we introduce saire independent U(0,1) r.v.s kS andA!R,

iWJ and jfJ', and form the point processes

i i ri  2" Pj !,r', (5.8)

on ro,iJ (0, 8) X [0,1]. By a straightforward application of Lea 7, the triple

(Ci',r2) is seen to be separately exchangeable, in the sense that

(;lfl ' (flJ f2) " , C2f2 ,, ) 59
for any transformations f1 and f2 of [0,1] which permute disjoint dyadic intervals

of equal length. Here the transformations of i and C2 are of course in the

first coordinate.

The distribution of (1,,€ 2 ) i a mixture of ergodic exchangeable

distributions Q, and since t is ergodic, it retains its distribution under a.e. Q.

Note also that the projections

S= i'ri, = jr',e (5.10)

of and 2 Onto (0,-) X[0,1) are invariant under the transformations in (5.9),

and hence a.s. non-randomndezr a.e. Q. Finally, the r.v. 's f and-A' are clearly
j

a.s. distinct under a.e. 0. Fixing a measure 0 with the above properties, it is

clear from Lema 1 that we nay redefine the r.v.'s A and 3, such that the

distribution of ecom2e s

Since and are a.s. non-rando,, they ay be written in the form

i = ri,c' 2 , a.s., (5.11)

for scne fixed numters ci and c! in [0,J3. Ccoparing with (5.10), it is clear

that there exist scm. rando permutations (i  of J and (W) of J', such that

ci , c; = ' a.s., ieJ, jeJ'. (5.12)Ki XJ
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Defining

" d, i&J, j*J, (5.13)
i3

and noting that the p ( iu2'i jowntly exdiangeable, may conclude from

(5.8) and Lem 12 that the r.v.'s Ti and T are independent and U(0;1).

Tb finish the proof of (1.1), it remains to show that the r.v. 's

a.. bi-' b! " iEJ, jeJ', (5.14)

are a.s. non-rando. But this follows fro the ercodicity of (Cl' 2)' since

the quantities in (5.14) are a.s. invariant functions of (190'C2 ), in the sense
of the transformations in (5.9). Fr exaple, a .={r. , a., hr

1) er 1

and Tj are a.s. uniquely determined by the relations

{(ri'ri'ci)l= {(?',r!,c!)} = 1 a.s., ieJ, jeJ'.

Coenxsely, it is obvious from (1.1) that any random measure 1 of this

form is separately exchangeable. It remains to prove that t is ergodic when (1.1)

holds with non-ranm coefficients a ij,bi,b!,c>O, i,jeN. By Lamma 4, it is then

enough to cnstruct another randm. measure , as a fixed measurable function

of 9 and saie independent U(0,1) r.v. t0, such that 4 and ~ are independent

with the sane distribution. Since the last term in (1.1) is non-random and

measurably determined by g, it may be omitted for the sake of sinplicitv.

We construct rby letting the r.v.'s lj,Pj'&3, .,0!, i,jCN, be defined

as in the preceding argument, introducing an independent set of independent

U(0,1) r.v.'s i,jeN, and putting

Xei 06!+' +~P(j 4. X) + P!(XI.,1 (5.15)

Cmparing (1.1) and (5.5) (the former with coefficients aij,bi,b!, iEJ and jeJ'),

it is clear that there exist sawe random permutations (sci) of J and (Wc) of J'

satisfying (5.13) and (5.14). Definin.

s "' ieJ,jej' (5.16)

we may then rewrite (5.15) in the form

j= ZaijSr +1{bj(S x A) + b!(AX ,) a.s. (5.17)
i' j ) T

7b prove that 4 has the desired properties, it is hence enough to show that the
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r.v.'s . and " are indepeudet U(0,1) and independent of . But this is

equivalent to Shwing that they are conditionally inpendent U(0,1), given ,

which follows via (5.16) from the corresponding property for the variables

1. and Z!. 1317i  Io

Proof of Theorem 2. Assume that E is a jointly ergodic exchangeable random

measure on [0, 1] 2 . letting 6~ deot the diagonal in 0, lj 2, we de n 6

(D%) (- iX [0, 1]). By Lemia 6, the diffuse component of is ergodic exchangeable

along with , and by Imnma 11 it is then a.s. of the form c2k, for some constant

c>0. Hence the diffuse component of D is a.s. of the form c%, in agreement

with (1.2). 7b sinplify the writing, we nay henceforth assume that c=0.

Next we note that g is separately exchangeable on every product set B Bc ,

such that either B or Bc is a dyadic interval. Applying Theorem 1 with different

choices of B, it follows easily that

(Mi X [0,3)(D ) =;' x12' (0,11 x )(D') = 11. a.s., (5.18)

with M and M2 as in (5.1), for sa-a random measures 1l and 12 on [0,]. But

(DID(MX [0,1) = (Df)([0,1Jx x ) = 0 a.s. (5.19)

since D4 is a.s. diffuse, and therefore (5.2) and (5.3) remain valid in the

Present context. In particular, it is seen as before that Mix ?idt: , a.s. for

some constant c'>_0, and we nay henceforth take c'--0, for convenience.

As before, we may write g in the form (5.5), except that now we take a!=c
J J

for all j. We nay further assume that the sequence

r=j + (ij + g )., jeN,

is non-decreasing, and define J={jeN; r >01. Fran this point on, the proof

follows closely that for Theorem 1, so we omit the details.

The two representation Theorem 1 and 2 have rany interesting consequences.

Here we shall merely single out a few facts which will be needed for the proofs

of Theorem 4 and 5. The first of these relates the three notions of joint,

separate and complete exchangeability for random measures t on O,1] 2 , and may

be of sane independent interest. Fbr convenience, we shall write
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f(dsdt)=t(dtds), f8(dt)=f({,s3dt), ft (ds)-=-(ds x (t1) , (5.20)

and define ,4fJt{a t aO, t, fO,iJJ.

LAMB 20. For any random measure on oj 2, conditions (i)-(iii) belo are

eiMvalent:

(i) is ompletely tergodic] exchangeable,

(ii) % is sately ergodic] exchangeable, and w.p.1, 4s,, A for all s,

(iii) is jointly Tergodic] exhnebetDuO a. s., and w. 1.l1, A~~' 4~

a A '0 for all s.

MDreover, condition (iv) below implies (v), vere

(iv) g is jointly exchangeable, JD-O a.s., and w.p.1, + I 
4 for all s,

(v) , and ( ,I) is completely exchangeable in Wl=f(s,t) ; Ostcl}.

Proof. Since clearly (i)4(ii)=(iii), it is enough to show that (iii)4(i)

and (iv)=O(v). The two proofs are very similar, so we shall only prove the

latter inplication. Thus assume that f satisfies (iv). Since the conditions

in (v) are stable under convex combination of distributions, we my add the

hypothesis that g be ergodic. By 7thore 2, t must then be of the form

= Z{ajj74 , +4 b + ' (5.21)

for som constants aj,bj,cO0, j*N, and some independent U(0,1) r.v. 's 5jt'j,

jeN. The conditions in (v) are further stable under addition of independent

randam measures, as well as under monotone convergence, so we may consider

each term in (5.21) separately. The case 4=c)? being trivial, it remains to take

& a,+ b5 (5.22)
(TcTT'

for sm constants a,b_%O and some independent U(0,1) r.v. 'scrand 1T. In this case,

(E,) = (a,b), + (b,a) J (5.23)

so follows from the fact that (rc) - (T,a). To prove that (4,T) is

completely exchangeable in W', it suffices to note that the pair (a,?) is

uniformly distributed in [0, 13 2, so that (ai) is conditionally uniform in WI ,

given {opuI?, while (vo) is conditionally uniform in W,, given { 4ea0. The
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remaining possibility C-T has of course zero probability. D

For subsequent pr iofs, we shall also need the following two rather technical

results. In the present context, the notions of separate or joint exchangeability

of a vector valued random measure =( I,.. , 4) on [0,i32 refer to the two

coordinates of the unit square, rather than to the four oniponents of the vector.

Thus we are requiring conditions of the form
11 4 -d 1C 4

( f1, ... , (fAg) -) = I ... , ). (5.24)

where f=g in the case of joint exchangeability. We shall further use A, and the

notation of (5.20), in their versions for vector valued measures.

1 2 34 4I 21. LetI (t , 2,I 3,) be a separately e aeable R4-valued random

measure on [0,13 2, whose components are a.s. mutually singular, and assume that

K for every SOl3,

%1 4 0 A . V (5.25)

Then }4 is ciiony separately exchangeable, given (,2,3), while 1

[2iJis codtionaly ftchngeable in th fis coriae given 23

[rr (tl %3), resectvew.

Proof. Since any a.s. property of 4 is preserved under conditioning, and

since the asserted properties are stable under convex coubinations of distributions

for g, we may reduce to the ergodic case through onditioninq on the invariant

a-field for C. In that case, 4 has a representation as in 1heoren 1, but with

4
non-random R4-valued coefficients. From (5.25) plus the hypothesis of singularity,

it is clear that 4 and (I,92, 3) are represented in terms of disjoint and hence

independent sets of r.v. 's T. and r, so q4 and (%i ,52,g3) must be independent.
J I

Thus the conditional distribution of , given (,2,3), agrees with the

unconditional one, and the first assertion follows.

Next conclude from (5.25) and the singularity hypothesis that the sets of

r.v.'s j in the representations for JI and (g2,3) are disjoint and therefore

independent. Hence 1 mst be of the form



36

=Ea&j4~t C! + b ( .xj) + c)A a.s., (5.26)

where the r.v.'s 'T are independent U(0,1) and independent of (t2 E3

the al. By (5.26) and Fubini's theorem, it follows that l is conditionally
exchangeable in the first coordinate, given (4 13) and the 01 and the assertion

for l follows by the chain rule for conditional expectations. The saiie proof

applies in the case of T2.

In stating the next result, we shall use the furtler notation = + and

T= ks+

1 23 4 4Lemma 22. Let =( i, 2, 3, 4) be a jointly exchangeable R+-valued random
[0,12 wih 1k~ 24 1 2- vl 2 -3 -measure on )0,12 with ( I++)D=0 a.s., and such that 4+, + +12, 3 and 4

are a.s. mutually singular. Further assume that w.p.l
-2 -4 -1 -2 -3 (5

__e. i4 is conditionally jointly exchangeable, given (4 ,t, ),while (Fi-2)

is conditionally exchangeable in the first coordinate, given 3

Proof. As in the preceding proof, we may assume that 4 is ergodic, and

hence has a representation as in Theorem 2, but with non-random R4-valued

coefficients. The first assertion then follows as before, while the second one

is obtained from the fact that ( , 2) has a representation

(gi,2) - (ai,a)i'i +  (b'b!) + (cc'))2 a.s., (5.28)1 1 1

where the coefficients are constant vectors, while the r.v. 's M -nd c. are1 1
independent U (0,1), and such that the ti are independent even of 3. U

K- ___K_
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6. FXQANGFAILITY IN A STRIP

The- purpose of this section is to prove Theorem 3, which characterizes the class

of separately exchangeable random measures on the strip R+ X t0, 1], and its

subclass of ergodic measures. Though Theorem 3 is not needed formally for the

proofs of Theorems 4 and 5, its demonstration in this section will prepare the

reader for the partly similar but mre subtle arguments required for Theorems

4 and 5.

For the technical reasons explained earlier, we shall still take the notions

of exchangeability, invariance and ergodicity for randam measures to be defined

with respect to the groups of measure preserving transformations of R+ or [0,1]

which only permute finitely many disjoint dyadic intervals of equal length.

Proof of Theorem 3. Assume that e is a separately exchangeable random

measure on R X [0, 1. To prove that t can be represented as in (1.3), we ma,

assume by Iawma 3 that t is ergodic, and prove instead that (1.3) holds with

W, T and the /j non-random. In that case clearly h and all the f and qk reduce

to functions of one variable only, which we denote by the same letters, for the

sake of ecoormy.

In analogy with (5.1), we introduce the countable randam sets

M=fsR,; "(s X[1O'3) . 01' M2 ={tEtO,l3; e(RX t)#j (6.1)

Applying Theorem 1 to the restrictions of to the rectangles [0,n C0,13, it

is seen as in (5.2) that

X OAX12, (R+X "2 j K A a.s., (6.2)

for suitable random measures P on R+ and v on [0,l3. In particular, we get

c 2( XI)C= a.s. for sane constant c _l, which yields the last term in (1.3).

In the sequel, we my assume that c=O.

Since 4 is exchangeable along R+, we may next oonclude from Lemma 17 that,

witk given by (3.9), the rao set m=teLol]; t. of is a.s. covered by

sone distinct [0,1)-valued r.v.'s T IT2,. such that the associated secuence
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r jeN, is non-increasing. Since the r. are clearly invariant functions of ,)j )
they must be a.s. non-random because of the ergodicity of , and the sae thing

is then true for the index set J=(jeN; rj '0}.

Proceeding as in the proof of 7heorem 1, we may next use Umma 7 to construct

an auxiliary point process

~ T~r~4~jejlfrj c *(6.3)

with a.s. distinct marks Xj in [0,1], jeN, and such that the pair (Ct) is

ergodic excmngeable, in the sense of the mappings (tC)- (f (f I f2 -  f)

Here f 1 and f2 are measure preserving transformations on R+ and [0,1],

respectively, of the special permutation type. The second expression in (6.3)

is obtained from the first one, if we apply a suitable random permutation (itj)

of J, to make the quantities c =,. a.s. non-random. Note that the points r'=T
)l3 j

will be measurably determined a.s. by (9,). From (6.2) we conclude that

4((Nn-)xcT;J) = bjA a.s., jej, (6.4)

for srne random variables bj>O, and since the latter are clearly a.s. invariant

functions of (W), they must be a.s. non-random.

Next we note that #M is invariant and hence a.s. constant, so that we can

write {ij for some sequence of a.s. distinct r.v. 's a.. By (6.2), we may

further write w.p.l, simultaneously for all i,

*=i X - 0' i + 7- *AS (6.5)
j j k i

in terms of suitable -nmeasurable r.v. 's ti. . kP! A, and fik[ 0,1] . Note that

thez! and i may be taken to be a.s. distinct for fixed i, and that we may

assume ' il>_ _... a.s. In fact, Lanva 17 shows that we may choose the entire

collection of r.v. 's ?ik' with arbitrary i and k, to be a.s. distinct and

different fron the r!.

We shall now use the quantities in (6.5) to construct a marked point process

along R+, where the marks -3 are defined by

(Ci1' 1' j~j), (J'ik, ktN)),(6)
with
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.=((-r( X rO13) + I3 Stij +  rik (6.7)

Thus the space of marks is given by

(O ) x R+Ji cRP+(.8

and is certainly Polish. Our only reason for including the redundant mark Pi

in (6.6) is to make sure thatl will be finite on bounded sets, in any natural

complete metrizaticn of K. We nte that the coefficients C I and 3 P! in

(6.5) may be measurably reooere from the marks 4i in (6.6), through suitable

projections which we denote by f j, gk and h. Thus

S= f j(1# P = heQ, A = . (6.9)

Frcm the separate ergodic exchangeability of (, we may conclude by

means of Lemma 6 that I is ergodic exchangeable along R+. Indeed, the hypothesis

of Iew 6 is fulfilled in the present case, since 1, when regarded as a function

of (f,;), is clearly invariant under measure preserving transformations of the

special permutation type along Eo,1). Thus Lemma 13 shows that 1 is Poisson,

with an intensity measute of the form Ax2 V. By the invariance of 1, it is

further seen that the exchaneability of (4, ) along [0,1] remains conditionally

true, given 7. In fact, the sequence of pairs (cT,Ji) may clearly be chosen to

be Tf-neasrable, in which case the exchangeability of (f, ) along [0,l] is

even true under onditioning with respect to the random elements M and i.

By Lemma 6, the conditional exchangeability of (k,;) carries over to tle

pair of marked point processes (,') with ;' given bv

;= 6 (6.10)
i k fk"

where the second summation extends over indices k with 0. Using Lemas 12,

3 and 1, we may conclude that (6.10) remains a.s. true with the r.v. 's fik

replaced by some ylk, such that all the-ri and &are independent U(0,1) and

independent of 1. Cumparing the two versions of (6.10), it is clear that even

(6.5) remains true with ik replaced by p . This shows that 9 has the a.s.

representation

S
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in agreement with (1.3). Note also the r.v. 's in (6.11) have the desired joint

distribution, except that I is a roisson process on the 'wrong' space R+X K.

'To attain a complete conformity with Theorem 3, we add an extraneous point

a to K, and note that a measurable mapping T: R+-. K=K u{3 exists, such that

v-I- on K. The induced napping T' oR+ into R+x Ka will then transform any

unit rate Poisson process on R2 into a Poisson process on R+X K with intensity

)6x V. By lema 1, there further exist soe pairs of r.v.'s (!, -3 , ieN, which
1 1

are independent of all V and and form a unit rate Poisson process on

R+ satisfying 1,',-n a.s. on R+x K. Dfnng

V = f.*T, g. T, h' = h.T, (6.12)

with the added convention that f (8)=gk(3)-h(3)--0, it is clear that (6.11) remains

true, with the objects fj ,gk,h, oi and a replaced by their 'primed' counterparts

f!, g , h', 0! and 11, reprectively. This completes the proof of the representation

(1.3).

In the other direction, it is clear that a random measure g of the form

(1.3) is separately exchanqeable. 7h ergodicity of g when o and the Pj are

constants will follow from Lami 4, if we can only produce an independent copy

%"=F(g,T) of ;, with Y a U(0,1) r.v. independent of 4, where the measurable

maing F is not allowed to depend on the particular functions fj, gk' h and

coefficients Pj occurring in (1.3). Our construction of 4" will proceed in two

steps, where we first construct a random nieasure 'G(,G') from t and an

independent U(0,1) r.v. f', such that f' has again a representation (1.3), with

the same functions and coefficients as for 4 and the same r.v. 's T , but with

the set of r.v.,s 43,4. and k replaced by a nw collection o,,P i,k*N,
1 ?i-?i

which have the sawe joint distribution but are independent of and the ?.

As before, the mapping G is not allowed to depend on which particular functions

and coefficients occur in (1.3). The existence of such a mapping is guaranteed

by Leimm 10 (witho(T)), where the crucial condition (2.10) holds by Lemma 18,
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since has conditionally stationary independent increments, given the sequence

(r.).

The secnd step in our construction of I uses the method already employed

in case of Thorou 1. Thus we first introduce a sequence of r.v.'s l, jej,

defined as the T. of Iaa 17, and note that the %. are measurably determined

by %'. C(mparing with the representation (1.3) for ', it is clear that cj-T=

a. s. , jW, for sane rankn permutation (it) of J. Let us next introduce a

sequence of independent U(0,1) r.v.'s , independent of everything else,

and define the new random measure

+ X~' I( p lX of, J, 1. (6.13)

Then 4" has a.s. the mue representation (1.3) as 4', except that each Tj is

replaced by the corresponding quantity t=T. Moreover, (6.13) exhibits F" as

a fixed measurable function of v' and )"'JqYj... Representing 4'i1ji;ji... as

functions of a single U(0,1) r.v. I independent of 4, it is then clear that

"=F(t,r) for a suitable fixed F.

7b check the distributional properties, note that the quantities ; are

conditionally independent and U(0,1), given 4 and all the *i D ?ik andkj.

In other words, they are independent U(0,1) and independent of 4 and all those

variables. Frm this we onclude that f" is independent of 4, and that the two

arrays (T'i"0 k i~J,k*N) and ( ,i,I,r?ik; i,j,ktN) have the sme joint

distribution. Since these are the r.v's occurring in the representations (1.3)

for F and g", even the latter are equally distributed. ihis completes the proof

of Theorem 3. 0

' -*1iunmmm mnni~lmnnllnmn l I
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7. EXOWZMABI=L N A QUADRAWE

In this section, we shall prove the last two of our main results, those which

2characterize separate or joint exchajogeability for random measures on R-+. Much

of the preparatory work has already been done in previous sections. Yet it will

be convenient to isolate some of the main steps in the form of lemmas, which may

easily be put together in the end to furnish complete proofs of the two theorems.

Since the arguments for separately and jointly exchangeable measures are rather

similar, w shall treat the boo cases in parallel.

Our first lemma characterizes the caTrwent of g which has independent

increments, globaly or in sae suitably restricted sense. Until further notice,

we shall use the notation of (5.20), and w shall write &07[at; a,t*R+}. Recall

that, throughout this section, the notions of exchangeability, ergodicity,

invariance, etc., are to be understood in the sense of arbitrary measure preserving

transformations of R+, which permute a finite number of disjoint dyadic intervals
of eqa length.. Deine t mj..,),,,, st. an W-{(,,,t),,+, st].

22

laina 23. Let be a random, measure on R 2. Then conditions (i)-(iii) below

are equivalent:

(i) is separately ergodic exchangeable, and w.p.l, (4s+ )R+.coo for all s>O

(ii) f has stationarvy independent increnents;

(iii) k-If wi), i+c)? a.s., for some constant c>0, sawe measurable function

f: R+--* R+, and samw randam triples (ci,Ti,i) i N, which form a unit

3.rate Poisson nrocess on R+.

So are the following londitions (iv) - (vi):

(iv) 4 is jointly eric exchangeable, 4D=0 a.s., and w.p.l, (%+)R+c

for all s)O;

(v ,ard (4," has stationary independeticentinW

(vi) (@) g(.) ,Ic a.s.. for scm constant cLA, some1 Ci # i- -

measrabe fnctonsf,g: R+-' R+, and scae raxdam trivles (cr.T K-)

iCN, which form a unit rate Poisson process on P3 .

- m~mmmme i a. a
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Proof. Asure (i). "Mm Leywe 17 shows that, w.p.1, %,*A1 for all ,_O,

so 4 is coupletely exchangeable by lmma 20. Since conversely every crpletely

exchanqeable random measure is trivially separately exmhanosable, it follows

from the ergodicityextramiity in (i) that t is even ergodic-extreme in the

sense of comlete exchangeability. Hence (ii) follows by the obvious tw-diensional

extensions of lavwis 11 and 13. Assuming (ii), we my next conclude from the

suie two-dimensional results that

oc~ +7 i).S~ a.s., (7.1)
I 1I

for same constant c>-O and m random triples (cri,%i,), i*N, which form a

Sprocess n R with intensity of the form ) . C s f: R R

to be measurable with f-1 V on R+N(01, it is then clear that t hau the same

distribution as the expression in (iii), and the correspondinq a.s. representation

follos by lame 1. Next (iii) implies that 4 is separately exchangeable, and

that w.p.1, (s+9,)R+-.s for all sO. 7o see that 4 is erqodic, we note that

every inrariant function of 4 is also an invariant function of the secruence

41,2,..., where t denotes the restriction of the translated measure %(- +(k,0))

to the strip [(0, X R+. Since the 9k are i.i.d., I is a.s. non-randcm, by the

Ielitt-Savaqe 0-1 law, and 4 is ergodic. This proves that (i)-(iii) are equivalent.

Now assume instead that (iv) holds. Then even +T is jointly exchangeable

by lImma 6, so 4 +4 is separately exchangeable on every set of the forr

(a,b) X (CO, a)LU bto)) with a'b. Thus Imna 17 shows that, w.p.l, the restriction

of tS+C to [O,aJuf[bf) belongs to Ai for all s(a,b). Since this holds

simultaneously for all rational a and b, outside some fixed P-nullset, we get

w.p.1, {s}c(f,+',), for all sO. Since 4D-0 a.s., it follos that w.p.l

s+fS* 4, for all s. We my then conclude from layua 20 that d'- are that the

pair (f,t) is completely exchangeable in W.

From the obvious extensions of Lweus 11 and 13 to W, it follows that the

diffuse =%vnent of ( , s a.s. of the form (, on W, upee t Y are

suitable r.v. Is, while the rarked point process w which describes the purel
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atcmic part of (,) is Cox an W with a directing random measure of the form
*2I Msreo 2 N aol. Noe1

1V, where Vis ara n as oR+ l t an a a .b

determined, via the law of large nmrbers, as jointly invariant neasurable functions

of g, so by the ergodicity in (i), these quantities ust be a.s. non-random.

In that case, (4,) has indepiedent increments in W, and (v) follows.

Assuring (v), we get a3 before a representation of (, ) in terr's of

quantities J, ' and V, which nay again be taken to be non-ranzx. The condition

d V imlies that (I, ) (,), so '= , while V is srvetric with respect

to D. In particular, the diffuse carPonent of equals 1)2 a. s., in agreeient

i'ith (vi), and we Tay henceforth assume that * is purely atomic. Let us next

chtooe ton rveasurable functions f,g: P+-o, R+, such that A(f,g)-l--Y/2 on 2\ O}.

Introducinq a unit rate Poisson process - on R3, and writing j(dsdt )= V(dtds),

ue define

=Sf (du)I(- x du) + Jg(du)(. x du), (7.2)

so that

J(f, g) (du) x du) + f(g, f) (du)~( xdu) (7,3)
S (x,y) ( + 4,) (-.dd)

C=V (f(,g))-t ?, xlgf)) -  (7.4)

Here 4 and ~~~~~~~~' are both 'Poisson processes on CX(., tjwihhesminniy+ g. .O)with tesr nest
-x V/2, and since they are further int {O) even their sum

Ast be Poisson on the latter set, with intensity qiven by A2 X . hus (, ' " )

d on le by (7,3), so on R2, and then Leu 1 shows that even has a

representation as in (7.2). Hence (v) inplies (vi).

Let us finally assume (vi). ."en the second and third statements in (iv)

are obvious, while the joint exchangeability of k follows from the fact that

J= T i, is jointly exchangeable in the first two coordinates. To prove the

ergodicity of in the sense of (iv), we note that the distribution of 4 can be

measurably constructed from 4 thwough the law of large numbers, since 5 is

dissociated (cf. Al (us'2)), and hence that Laum 4 applies with h(t)=q t Thus

(vi) irplies (iv), so even the last three conditions are equivalent. t3

L
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To state the next result, we associate with a qiven random measure on R+

the sets
M, = (5); 4({sJxR)=ew+ D = jt O; g(R+Ktt3)=e.',, (7.5)

M =4.1 v M2 u B~e; 43s)>O,(7.6)

and introduce the deccmposition of 5 into four comonents

It is easy to check that the k are measurable functions of 9. The following

result describes the joint distribution of the wi hen t is separately

exchangeable, and states the correspording result for the jointly exchangeable

case.

IM 24. Let 4 be a separately ergodic n le rando measure on 2

and dine ("'74 M tr e exist som ran easures '' k2 on

an d_ V,,V 2 o R+ X (R \ {0J), such that 4 and 2 have a.s. diffuse ampnents

'Ai and C2 X A, respectively, hile their associated point processes 11' 12
of jump positions and sizes are Cox and directed by . x Vi and e 2A. moreover,

t4!! ** 11 021 V, 3) are both seParately ergodic exchangeable, and 4 is
i dpneto (402'91) Mie 11 is conditionally irderendent Of(01493)

given VVd1  2 is conditionally indePendent of (ScAJ3)I given V2
ssiue instead that 4 is jointly ergodic exchaneal on 2, i define

410" .. 4 y (7.7), but with M1 and M, replaced by . Then there exist s

ranclm measures De (2 on P a nd XonR ( 2R+ (01) P
-+ P\0 such that4 1an!!2 2have

a.s. diffuse 22mnents Axe 1 a 2 ," respectively, while the 22int process

of atomn positions and sizes associated with ( is Cox and directed by AX V.

mreover, andM (9( 2 Y, 3) are both jointly ergodic exchangeable, and 44is

of (412 ) while 11 is conditionally ndependent of *- ''2'

M 1 V.

In these statenmits, the separate or joint exchangeability of (.C1,a(2 'V 1'V0,3 )
or (I 1 ' 2 ,V,C 3) is defined as in (5.9), with the functions fi and f 2 taken to

be equal in the joint case. Fbr an atcmic rar& vmase the associated

- -- ",.".,,mm~mmm, mm mmmm W mn m m mm m m m mmm " m



46

point process of atom positions and sizes is given by I~-I j "

Proof. Assme that F is separately ergodic exchamngeable. Then so are

'" 4 ,as well as their diffuse and atomic components, by IMUM 6. Applying

laim 17 to a 2' we mry conclude that, w.p.1, gts1cx- )*l and g2. {t})

eM1 for all s,tO. Thus Imaias U and 13 yield the stated form of the diffuse

and atomric omqonents of fland f2, in terms of random mesue , C2 ' V1

and 2 . Since the latter are veasurably determined by 4, through the law of

large numbers, we may conclude by another application of Lemma 6 that even

(W1 A2 ''I V2'43) is separately ergodic exchangeable.

By Lemnas 6 and 17, the hypotheses of Lmma 21 are fulfilled for the

2
restriction of ( 44... ,4) to an arbitrary square [O,a) , so by martingale

convergee as a--Pm, we may cncide that 44 is conditionally separately

exchangeable, given (', , 3), while g is conditionally exchangeable in the

first coordinate, given (42,53)' Since ;4 is ergodic, it follus from the first

stateant, as in case of lamma 9, that 94 is independent of ( ,i2,03). Since

(,vi) is invariant under measure preserving transformations in the first

coordinate, the __ anebility of 4, remains valid under conditioning with

respect to ( SV1 _' Even 11 is then conditionally exchangeable in the

first coordinate, given (*e4,V#1,f2,k3). By Lumra 13 plus the law of large numbers,

I must -then be conditionally Poisson with intensity 'X VI, just as under

conditioning with respect to VI . Thus 11 is conditionally independent of

4,243), given V, a argxnert s that 12 i axiditionally

independent of *'2'1 l'3) given "2.

Asuming instead that 4 is jointly ergodic exchangeable, and using m

instead of M1 and 42 in the definitions of 1' """'t4' it is seen from Lamna 6

that 44 and (41,T2) as well as their diffuse and atomic parts are jointly

ergodic exchangeable. Proceeding as in the proof of Lemua 23, one may easily

check that the hypotheses of lamua 22 are fulfilled for the restrictions of

11"k4 to an arbitrary square [Oa32 . in particular, 9 1 1 st then be
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exchangeable in the first coordinate, and w.p.l., (4+ )((sixo )el for all s,

so using Lemas 11 and 13, we may conclude as before that g, and t. have a.s.

diffuse components of the form A 1 and OxEk, respectively, while I is Cox

with directing randn measure of the form A A. It is further clear frum Lamna 6

and the law of large numbers that even (*,2,V,) is jointly ergodic exchangeable.

The in-ep --enc and oniditional e assertions may be proved as in the

separately exchangeable case, except that La~ma 22 should rww be used instead

of Lamsa 21. U

The stnrture of the last cowonent in the preceding decumposition of

was essentially analyzed already in Umama 23. We proceed to derive representations

for the sequences ( , YY,V 21 3) and (K,11 2,'f, 3) occurring in IaM 24. As a

first step, we shall then consider marked point processes on R+ of the form

~ ~ (7.8)
i=l j=l i'T'"ij

where c4v <... and 'IT.cT2.. while the ij take their values in sane Polish

space K. Here we nay write

and note that the array A and the siple point processes tj and ; are uniquely

and measurably determined by f.

Lemma 25. Fix a Polish space K, and let t be a separately erjodic exchangeable

)nt process on R2 XK of the form (7.8), whe~re - and. 4tt ~' Then

the random objects A, and in (7.9i are independent, and A is separately

ergodic exchageable, whilet and C are homogeneous Poisson processes on R+.

Assume instead that 4 is jointly ergodic excagale, and that .= . Then

A and I are independent, and A is jointly ergodic exchangeable, while v is

lxhCgsleoUs Poisson.

'roof. Assme that F is separately ergodic exchangeable. Then and 4 are

ergodic exchaneable by lauma 6, so both are hamienwus Poisson by Laima 13.
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Since ? is invariant under measure preserving transformations in the first

coordinate, 4 remains conditionally exchangeable in that coordinate, given .

Using Lanmas 8 and 14 plus the fact that I is ergodic, we way conclude that

is conditioally homgeneous Poisson and independent of A, given . Hence I has

the same conditional distribution, given A and C, and since 17 is ergodic it

follows that I is independent of A and . Applying the sa arqument to ;, we

may conclude that A, I and g are independent.

Fran Lemma 14 it is further seen that A is separately exchangeable. To see

that A is even ergodic, let 7 denote the invariant 6-field induced by A, and

conclude from lama 7 that J remains separately exchangeable, conditionally on 7.

Since , is ergodic, it follows that g is independent of 7, so 7 miust be

independent of itself and hence trivial.

In the jointly exchangeable case, we first note that is ergodic exchangeable

by Lmama 6, and hence must be hczvgeneous Poisson by Lamm 13. Next we introduce

the random objects

"a = 1C0Oal, la =[0,aj, Ia (a,b], 0 -ac bca., (7.10)

Aa = (or.; iJ a), A(n) = (..j; i,jcn), a-0, n*N. (7.11)

Applying Trs 2 and Lam 15 to the restriction of k to a sauare t0,a] 2 , it

is neen that Aa is conditionally jointly exchanqeable, given Va' while Ia is

conditionally exchangeable and independent of Aa, given Va . The first statement

implies that A (n) is jointly exchangeable, conditionally on the event tVa>_n} ,

and fran this we obtain the joint exchangeability of A by letting a-0 and then

The second statement shows that Ia is conditionallV exchangeable, given V

and Aa , so if 0-a-bcs, it is clear that I a is conditionally exchangeable,

given a, Ib and Ab. Here we ray let b-. ,, and conclude-by martingale convergence

that Ia is conditionally exchangeable, given Va, ,1' and A. Taking conditional

expectations, given A, and letting a-.p, it follows that I is conditionally
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exchmngeable, given A, and since i is ergodic, it must then be independent of A.

It remains to show that A is ergodic. But this follows by same argument as in

the separately exchangeable case. D

Our next aim is to combine the results of the last lerma with those of

Section 4, to obtain explicit representations of certain exchanqeable marked point

processes on 2, in terms of suitable Poisson processes and i.i.d. sequences.

2Since the projection of F onto R7 is no lonqer assumed to be locally finite, we

shall need to introduce an extra mark in each coordinate, so that t will take

the form
= . .(7.12)

i--l j=l i~j i' 1 ' i

Here the marks at. and are assmm to be R+-valued, while the ij take their

values in some Polish space K. We shall further assume that the rando measures

n= i{e; i-n} n = { ; pj(n}, neN, (7.13)

are locally finite simple point processes on R+. Nte that the notions of

exchangeability and ergodicity for r are defined with respect to transformations

of the first two cumponents a. and Tj in (7.12).
1 J

Lemma 26. Fix a Polish space K, and let C be a separately Erdic exchangeable

point process on R XK of the form (7.12), such that the 7, and 4n in (7.13) are

locally finite sinple point processes. Then there exist some measurable mappings

f,g: "-. + an h: R-xO[0, 1] -- K, saiv independent U(0,1) r.v.'s 1j, i,jeN,

and some independent pair of independent seauences ((ari,a(i); il) and ( ) j(-N),

which form unit rate Poisson processes on R2, such that (7.12) holds a.s. on
xK with Ti, e and ij replaced by a!, T!, f(W), g 1) and h(si, ,> j),

respectively.

Assume instead that t is jointly ergodic exchangeable, and that (7.12) holds

with cl.iT" and K.. Then there exist same measurable mappings f: R+ A+ d
2h-. R+- KLo,1-o K, Sami independent U(0,1) r.v.'s 11 Ui, cj, and somie

3j ji ___
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independent sequence ((d:,?!); ieN), which forms a unit rate Poisson process on
.2 4R , such that (7.12) hlds a.s. on R4 xK with c- ='., -- and replaced by

o' f(W) and h(se, 3,J! )' respectively, where Y'.-O.

Proof. Assume that is separately ergodic exchangeable. By Im 25, the

point processes In and n are homogeneous Poisson, say with intensities an and bn

respectively. Consider n so large that an A bn .O. Then we may write

i= . neN, (7.14)

in = _ i~ n j=l nj

where 0n 1  <n2 ... andTnlrn ... Here

Cn = di TnJ T i,j,neN, (7.15)
n ni n j

for suitable randa indices 7ni and Anj, and we may introduce the corresponding

random marks

0n 4= , ,ni = i, i,j,neN, (7.16)

and form the arrays

i9 = ( !ni'1n3  ' nij) '  i,j,nN. (7.17)
ij ( U'nj nij

By L mmas 6 and 25, the arrays X (n) are separately ergodic exchangeable,

and they are further nested in the sense of Section 4. Hence there exist by

Lama 19 sae measurable function F: R2 0to,1]--a R2 xK and som r.v. 's ' nj'

ni.j' i,j,nN, %hich are independent for fixed n and uniformly distributed

on the intervals 10,an], [O,bn] and [O,lJ, respectively, such that
x(n)
Xin = F( ' n ' .) a.s., i,j,nN. (7.18)

ii ni-i nJ nij
Since beni does not depend on j, and simildrly for Pnj' we may rewrite (7.18) in

the form

f4n -- i, Nj -- gnj) , If - h(o i,(5j0Vn.j) a.s., i,j,nt,, (7.19)

for soe measurable functions f,g: R+--* A+ and h: R; x [0,1]--a K (cf. Lenma 2.4

in Kallenberg (12)). For definiteness, we may take

f(x)=oo for x-masup a , g(y)=9 for y-sup bn. (7.20)
n n

Since x (n)' 'In and ;n are independent for fixed n by Lem 25, the sequences

(Cni) and (Znj) are independent, and we may take the array -'inj,fnij), i,jN,
ni~~ nijj*n
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to be independent of all 0ni and Tnj. The form a Poisson process with

constant intensity a n while the are independent and uniform on [0 ,a n, so

the pairs (nit i) itN, form a unit rate Poisson process on R+ K CO,an (cf.

Kallenberg(9)). Similarly, the pairs (iIn), jeN, form a unit rath Poisson

process on R+X [0,bnJ, and the two seqTences are mutually independent and

de t of all tj, i,jEN.

Let us now introduce r.v.'s 0, ! P!' 1)j i,j*N, on an arbitrary

probability space with the stated joint distribution, and define g' as the

double sum in (7.12), but with di,Tj,gis,Pj and ij replaced by dl' V, f(ce)'
and) h(- 13,,j), respectively. TIhen o' 2 2 for r n,

so a =zmone class argument shows that in fact 4' on RK. By Iemma 1,

we may then redefine the r.v. 's ol, T!, 90, p!' ,. with the same joint

distribution, such that '=4 holds a.s. This completes the proof in the separately

exchangeable case. The representation in the jointly exchangeable case is

obtained in a similar way.

We shall further need a simple technical fact-

Imm 27. Let K be a kernel from R+ into some Polish space S, and let 9 I S.

2Then there exists sme Treasurable mapping f: r;-S v , such that

A(f(u,,)) - = K(u,-) on S, u40. (7.21)

Proof. Use a Borel iscrorphism to reduce to the case when S=R+. Then take

_finf0t!O; K(u,[0,t)im.v , v- K(u,R+), (7.22)f , v> (u,R+). 0

Proof of Theoren 4. Assume that is separately ergodic exchangeable, and

define ,... '4 by (7.7). Then Lmina 24 shows that t4 is also separately ergodic

exchangeable and is independent of , Moreover, satisfies condition

(i) of Imme 23, and hence nst have a representation as in condition (iii) of

the sae lemma, corresponding to the second and third terms of (1.4). For

convenience, we ray henceforth assume that t4 0.
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Next we conclude fra amma 17 that

where 1

= 1inupn 7+eFt((k-lvk])i t>O, .(7.25)

n-tee k--l.
and that there exist same sequences of a.s. distinct r.v.'s (7lr,.... and

such that M1Cf(a and IA2 C{CTI a.s. The cardinalities of M, and

are invariant functions of F and therefore a.s. comstant, so by lemmas 6 and 13

it is clear that each Mi is a.s. errty or a.s. infinite. In the latter case,

w nay assume that

1l =kC(} or M2  {C!} a.S., (7.26)

and define

= c~i'~3=i'jeN. (7.27)

VLe further recall frcm Iemma 17 that the sets {5~o; 9> m-3 and {t? O; p >Eji are

a.s. locally finite for every E),-0.

Let g, ', V and V' denote the measures 0C2' A, V2 and V1 of Le'ma 24.

Since 41 is supprted by R+X ' 2 an t2 by M1X R+, it is clear frcin the law of

large numbers that 4K and 4' are a.s. sunrorted by M, and r1, respectively, while

V and 9' are a.s. supported by ty< (0,.) and m2 X (0,^). ,Ve define for i,jiN

mu4j1"3.}P ~ ~V(~~~v~'(a ix j (7.28)

and introduce the marked point process

= (7.29)

If 1l are M are a.s. infinite, it is seen fra Lemma 6 that is separately

eraodic exchangeable in the first two coordinates. Hence there exist by lan 26

same measurable functions f: R2  [0,I]-P R+ and h,h': P+-, R+, sowe kernels G

and G' fram R+ to (0,"), sane independent U(0,1) r.v. 's j, i,jeN, and some

independent pair of independent random sequences (A.i'.); iEN) and ((t, '); jeN),

which form unit rate rbisson processes on R2 , such that (7.29) rerrains a.s. true
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with cr.,d! ,.'at. ,J! and 1.replaced by T,r', h(,.), h(OW1, G(i.) , WOP~-)
]. jI,,i I 1)j I) I I

and f( ,CJ), respectively. In view of (7.28), we thus have, a.s. for i,jN,
I3 I

(7.30)

If instead only M is infinite while 42-=0 a.s., then f1=93-0 a.s., and we

may consider in place of 4 in (7.29) the marked point process

C1 = J ^ (7.31)

which by Lamm 6 is ergodic exchangeable in the first coordinate. Hence Lame 13

shows that is haxrgeneou Poisson, so there must exist scwie measurable function

h: R 4  R+, m kernel G from R+ to (0w), and some unit rate Poisson process on

2+ with atcm positions ('r.,#i), iA, such that (7.31) remains true with d'c i

v i replaced by rj, h(6) and G(zi), respectively. 'Ihus (7.30) still holds in

this case, with I,, %t and Ci. as before, and with f=h'=C'=0. The same argument

applies to the case when M.=O while M2 is infinite a.s. Finally, (7.30) holds

with f-h '=G-'=O when a.s.

By Lmtr 27, there exist scme measurable functions g,q': R2-- R , such that

A(g(x,.)) " = G(X), A(g'(x,.)) -I = G'(x) on (0,4), xeR+. (7.32)

Let us further introduce scxe mutually independent randm sequences ((rSk, Xjk)

keN) and ((, , k-N), jeN, independent of the r.v.'s ?' ', , ' i,'4

2
i,j4eN, such that each sequence forms a unit rate Poisson process on R2 .Define

j=lk=l ' Ik j=l "

i2 l k1 1: g (,h.l.-X.) +S' Z) (7.34)

From (7.30) it is clear that the diffuse aixponents of fi and g equal a.s.

AX and W2X "', respectively. Moreover, the point process Ii of atam positions

and sizes associated with i is onditionally independent of (s ,2'13) and

POisson with intensity I V1, given the r.v.'s Ti and %', "us ji and (*,i',

remain conditionally indpendent, given Similarly, the point process1
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associated with 4 is ODitionally independent of (C2 ,4% 3 ) , i V and

Poisson with intensity V2I ;k. Since these properties determine the oonditional

distribution of (ij) given (G'. ,V1 , 2 1,), and are the sane as for

by Lemm 24, it fo1los that %i,41,2 ) 9 (41 ,4 2 , 3). B lam 1, may then
redefine the r .v. 's ck' Xik and jk with the sane properties as before,

such that - and a.s. This cmpetes the proof of (1.4) in the ergodic

case. The representation formula extends immediately to the non-ergodic case,

by means of Im 3.

Cbiersely, the separate exchangeability of a random measure g with

representation (1.4) follows from the corresponding invariance properties of

Poisson processes. If C and T are a.s. non-random, then t is dissociated in

the sense of Aldous (1,2), so its distribution can a.s. be reconstructed from

a realization, via the law of large nmbers. Hence is ergodic in this case,

by leama 4 with h(t)_=mt. 13

Proof of Theorem 5. Most of the argument is very similar to that of the

preceding proof, so we shall only indicate the changes. Assure that 4 is jointly

ergodic enahangeable. By LeIa 6, the diffuse mass along the diagonal D is ergodic

exchangeable, so by Lemma 11 it is a.s. equal to a constant tires D' The

remaining part of 4 fulfills the condition (iv) of Lemma 23, and hence must

be representable as in condition (vi). Thus 44 gives rise to the second, third

and last terms in (1.5), and by the independence assertion in Lemm 24, it remains

to derive the representation for l'2

Excluding the trivial case when M= a.s., the only remaining possibility

is when M is a.s. infinite. We then define

g{(s, s)} + lineup 1  ((k-lkJ), s>O, (7.35)
n k=l

and conclude from Iamma 17, applied to the restrictions of t and E to sets of

the form (S,t)c x(s,t), that Mu{s0; ?S:0} a.s., and that the sets fsO; VS' -

are a.s. locally finite for arbitrary E.O. As for M1 and M2 before, we may
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choose a sequence of a.s. distinct r.v. 's lC2,..., such that M={a]. a.s.,

and we shall put

The random measures (6,6')-(2,01) and I in Iam 24 are a.s. supported by

M ndH ( 101) , respectively. Let us write
9(i }) y ,V=V(oy)' - i,j*N, (7.36)

and define

I" 15 ,,#,0 (7.37)
i-l j=-. 1 3 ?1 ?j J I i. j

Then o is jointly ergodic exchangeable in the first two coordinates, by Lamia 6,

so by lam~ 26 there exist soeesurable mappings f : R+ 0 13-1] R+ and h, h':

R+7. P+, sawe kernel G from P.+ to ]R+7\{Of), sa, independent U(0,l1) r. v. Is ~ ~

I1ic, and some independent sequence of random vectors (',ai), iel, which forms

2
a unit rate Poisson process on R+, such that (7.37) renains a.s. true with

op I~ ~V. and *Vj replaced by Tr., h (i.), h (~j) , G OA ) and f i
)i 1 )1 2 1 1)11 )

respectively, where Cii_=0. Thu we have, a.s. for i,jeN,

( i = h % ) ' T i = h ( ) , I (( 9 X ) =r : ( ' ) , f 3 { ( i f(r iT,3 j ) . ( 7 .3 8 )

By Lima 27 there exist sa'w measurable functions g,g': 2 +, such that

-1 2A(g' (x,.) ,g(x, -) )-I  GWx on R;\(01, xC-R+. (7.39)

Let us further introduce sme mutually independent randm sequences ((aik' 'k)

kN), i*N, independmt of all the T. , ',ij, i,jeN, such that each sequence forms

2a unit rate Toisson process on R;. Define and 4i by (7.33) and (7.34), but

with -r' P#' 'yk and Xjk replaced by T., j I.k and k respectively. ITen

(Q, ) has a.s. the diffuse component ' K (l,62). Moreover, the point process

1'of atomt positions and sizes of (qj~t) is conditionally independent of Ve2 )

and Poisson A XV, given the r.v. Is T and aA, and hence also given V. Oaparing
1 1

with the properties of , and2 in Levm 24, it follows that , d

(f02V and by Iam 1 we can redefine the r.v.'s ok k and Xik' such that

equality holds a.s. The proof my rK , be completed as in case of Theoren 4.
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vie conclude the section by remarking that Theorem 4 could also have been

obtained as a corollary to Theorem 5. In fact, any separately exchangeable

random measure t is also jointly exchangeable, and hence must have a representation

as in (1.5). For the restriction of f to the set

A = UU {[2m-l,2m) x [2n,2n+l)}, (7.40)
m n

we then get a representation of the form (1.4). Using the separate exchangeability

plus Ifirim 1, it follows that f itself has a representation (1.4). Cur reason

for giving a direct proof of "Theorem 4 is that Theorem 5 is considerably deeper.

In particular, one needs for its proof the representation theorem for (nested

arrays of) jointly exchangeable arrays, which appears to be much harder than

its counterpart for the separately exchangeable case (cf. Sheorem 3.1 in

F.allenberg (11)). Thus we did not want to burden the proof of the easier result

by discussing campleities w*Lich are relevant only in a more general context.
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8. CCNCUWDING F09RUS

In this final section, we shall analyze the relationship betteen the various

notions of exchangeability, give criteria for convergence of the series in the

main theorem, and decide to what extent the functions occurring in the ain

representation formulas are unique. For the sake of brevity, our discussion in

this section will be rather informal, with most proofs onitted or only briefly

indicated.

1. Ntions of exchaneability. As explained in the introduction, the notions

2of separate or joint exchangeability of a random measure g on R, R+X[0, 1  or

10,1 2 may be defined in term of either

(i) the class of arbitrary measure preserving transformations of R+ or [0,1],

(ii) the subclass of transformations uhich permute finitely many disjoint

dyadic intervals of equal length,

(iii) the array of increments of g with respect to an arbitrary regular dyadic

square grid.

Formally, (i gives the strongest and (iii) the weakest notion of exchangeability.

Hxqver, the notions based on (ii) and (iii) are easily sho.n to be equivalent,

and from the proofs of our main theorems,. it is seen that all three notions are

in fact equivalent. ,, shall indicate how this can be seen directl,. Cur argument

has tle virtue of applying without changes to higher dimensions, where no explicit

representation formulas are known. (Given the methods and results of this paper,

one may easily conjecture what the representations should be in higher dimensions,

though the expected length and corplexity of any rigorous proof seem rather

discouraging.) Note that, in dimensions d>3, there are also intermediate cases

between separate and joint exchangeability to consider, namely one for each

partition of the set of d coordinates, where a ommaron transformation is used

within each subset. We may refer collectively to these various notions of

symmetry as multivariate exchangeability. A one-dimensional version of the

following result was discussed in Lrmna 9.0 of Kallenb:erg(9)
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Proposition 1. For any notion of multivariate exchangeability of random

measures on a Euclidean rectangle, the definitions based on (i), (ii) and (iii)

are all equivalent.

The equivalence of (ii) and (iii) is an obvious consequence of basic

uniqueness results for randm measures (cf. Theorem 3.1 in Kallenberq (9) ) . T

prove that (i) and (ii) are equivalent, it is clearly enough to consider random

measures on a cube [0,1)d. our argument rests on a sinple approximation result:

Lumma 28. Let f be a A-preservi g transformation of 0, 1]. Then there exist

scme transformations fl 1 f 2 ,...: [0,1]-+ [0,1g of ype (ii), such that fn-* f a.e.

This is essentially a special case of a result for predictable transformations,

proved in Section 5 of Kallenbera (0). The next result is a simple consequence

of Lemas 11 and 12. Recall that a fixed measure p is a supporting measure of a

random measure 4, if CA=0 a.s. iff pA=0 (cf. Kallenberg (9 ) , p.103).

lema 29. Let 4 be an exchangeable random measure on [o,13 or R., such that

P1901>0.Then A is a supporting weasure for f.

We shall finally need a simple exercise on weak convergence:

Lama 30. Let q be a randcm measure on S=L0,ljd, and let f and ff2...

be measurable transformations of S, such that 4{fr/ f}=0 a.s. Further assume

that 9if = 5 for al n. Then even f-

This holds since P{fn/L* f}=0 inplies pfn- .1w it is nx e to pv

the propoition. In fact, assume e.g. that the random, measure on [O,1jd is

jointly exchangeable in the sense on (ii), and let f be an arbitrary A-preserving

transformation of ro,i]. By Iowua 28, we can choose functions fl,f 2, ... of type

(ii), such that fn-o f a.e. Ai. let A--Ifn-I fJ. i-yriting f("~(xl, ... Pxd)=f (Vl)...f (Xd)

it is clear that f-. fd on Ad . Ik: the d coordinate projections of g are again

exchangeable in the sense of (ii), and have therefore supporting measure A, by

Ianm 29. Since VAC=O, we get ()c-o a.s., so gjfn , fdj=0 a.s. rbreover,

f(fd)-d N. L e 30 yields; -i d, _,uich means that is jointly
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exchangeable even in the sense of (i). 13

2. Converqence criteria. Using the criteria for the existence of nultiple

Poisson integrals given in Kallenberg and Szulqa (13), m nay easily decide when

the series in Threms 3-5 converge a.s. our results may be ompared with the

conjectures of Aldous(2), p.139, in the special case of separately exchangeable

-K4

contn radmeasures on"R+2

It is clearly enough to consider the ergodic cases, when the r.v. 's w, /3, r

and 1' "" ...in (1.3)-(1.5) are constants. Tb sinplify the notation, we may

then elete fro our formulas, so that e.g. f(*,#.,4!,4ij) in (1.4) will be
1 1)A

replaced by f(tiW , ij). For an arbitrary function f, we shall write f=-f A 1.

For the fj, gk and f in (1.3), we define

F=-Ifir G = Eg, B =Yf3j.(81

For functions g: R2+-* R+, we define

kg = fg(x,x)dx, Alg(v) = Aq(.,y), Ag(x) =Aa(x,*), x,y*R+. (8.2)

The function f in (1.4) and (1.5) is regarded as defined on R2+X[0,, and % put2-% f (. ,y,. c.+, (8.3)
AD f =ADf (','0), fl(x) = A f(x,,.), f2 (y) = ,y ,y8

where )? denotes Lebesgue measure on R+ x Co,1].

Proposition 2. Consider fornulas (1.3)-(1.5), but with deleted oc and with

non-random ,'P2,... 2e the series in (1.3) converge a.s. iff

AF + + + B C ., (8.4)

those in (1.4) iff

x +, A, -Cgo, 'A (J9.,(M, v (8.5)

A{lcfce.J=Afl-fin.. for i=1,2, and *3[f; f 1 vf 2 -l]±cD.' (8.6)

and those in (1.5) iff (3.5)-(8.6) hold, and in addition

+ A f C . (8.7)

For convenience, we collect the general facts we need about the a.s.

convergence of random series and integrals. Let us denote integrals vith respect

to ,CX a 2 by gf, f and , respectively. Pu (x)=1-e-'.
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Luma 31. Lt ,2.... beidp net R+-value r.v. 's, and let 4 a

independent unit rate Poisson processes on R+. Fix two measurable functions
2A

(a) Yei' a.s. iff TEGi < S ,

(b) kf c so a. s. iff f c so, andE+ 4 (A+

(c) Cjigce a.s. iff Ajc.co=Algc* i=1,2; 2A
__I_ )k 14; g 1 vq 2 ~1Jl o

(d) gfg a.s. iff Cgc-,. a.s. andi- .C" )

Here (a) is classical, uhile (b)-(d) are taken fram Kallenberg and Szulga ( 1 3)

"b prove Proposition 2, it suffices in view of the exchangeability to consider

the restriction of to [0,j 2. In case of (1.3), we get

[0 1 = 2 (F .) + G(i.) +h (0. l{q.,<l1 + B + I, (8.8)

and since the r.v. 's ai with .c1_ form a unit rate Poisson process on R+, we

get the convergence criterion (8.4) by using Lemma 31(b).

In case of (1.4), we get

3 i + ( { , l _ +

k

+.h1 ,.lt1 ' 4rl} (8.9)

By Lema 31(b), the second and last sums converge a.s. iff +A+') Do.

Cbrklitioning on all the 1k., %$! , ;. and T! , it is further seen frn laia 31 (a)

that the first sum converges a.s. iff

1 7 f( i.- -1{e s vt a.s., (8.10)

xwhich is equivalent to (8.6) by Lemna 31(c). By the sane conditioning plus

Lem~e 31(a), the double smu involving g converges a.s. if f

t ~~~ a.s. (.1
k

Since +(x) _ .2 x), this holds by the formula in Lems 31(b), iff

[,{lV [i.( 1,.)J}1lJ<v a.a., (8.12)
i

which is equivalent, by the criterion in Leuna 31(b), to
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2 g)) (8.13)

The last condition, together with the corresponding condition involving g', are

equivalent to the rsning condition A(1A 2(N ) )' w in (8.5). This ompletes

the proof in came of (1.4), and the argument for (1.5) is similar, etcept that

statement (d) is needed instead of (c) in Lemna 31. U

3. Problems of uniqueness. O-ir aim in this final subsection is to examine

to what extent the representations in gumrea 1-5 are unique. The corresponding
(12)

problem for exchangeable arrays has been treated at length in Fallenberg ,

and since the present nethods and statements are very similar, we shall only

indicate sane typical results, and cmit all proofs. In particular, we shall

restrict our attention to the ergodic case, in order to sinplify the notation.

As before, this allows us to omit thew-dependence frum formulas (1.3)-(1.5).

For a reader familiar with Kallenberg (12) , the extensions to the general case

should be obvious.

'b sinplify our staterents, we shall only consider repxesentations which

are niunmal. By this we mean that certain sets JcN or A.C P+ associated with

the representation should satisfy

#J=0 =-+ J--N, or kA=.. =04 %AC=O. (8.14)

In case of (1.1), this should hold for the sets

J1  E- {i , + jjc4K .j ,j 1--1' (8.15)

and in case of (1.2) for the set

J = {ieN; (3. + P! + ~ o..a~)O.(8.16)

* In (1.3), sve require (8.14) to hold for

J {j11; Pi + Af 10. , 11 + If I O:> , (U.17)

in (1.4) for

Ao = {t>o, A -{f 1 + +2q h+ oJ > ,- {2 + 'o + 81 >o

-P =1 (, 1 , jg .Of, qo
and in (1.5) for
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A0 = f.+.t 0, )= {f1 + f2 
+ fD + A2 g + Ag' + h + h' >0, (8.19)

A= {(g+g')(,.), 0J, x_0.

The condition of minirality is no severe restriction, since any representation

of the form (1.1)-(1.5) can easily be modified so as to becoe miniml. A further

condition u may impose, without loss in generality, is that the sequence of

functions a in (1.3) be rxx-increasing.

we noti consider two random measures and f on [0 ,1 2 , admitting representations

as in (1..1) in tern of constants si,, / 3', and,

respectively. Assume that there exist s permutations 7r and 7,' of N, such that

Then clearly P=. The san conclusion holds if 4 and f satisfy (1.2) with

constants 0ij' /i' /Jj',' ", V i' /' ' ) ' -' , respectively, and there

exists a rermutation It of N satisfying

1) 1 1 8.

Let us next assume that rand 1 are defined on R+ x :0,1] and satisfy (1.3)

(thouh without), for soe functions and constants fjPkh,pj,Y, and fj,5kh,

Pj, j, respectively. Then --d , provided there exist som nermutation 7r of IN and

soMe A-preserving transformations T and T of R+, such that a.e. A for all j ,ket,

f.&T=f .T, = hoT =ho, j =1j, = 7. (8.22)

If F and are instead defined on R2 and they satisfy (1.4) with functions

and constants f, e, r, g ', h, h', and f, ,, ' , h', respectively,

then if there exist sots A-preserving transformutions X.7.Y..xU .V N,
xxyy

T,T of R+ and Z of [0,1, x,ytR+, each jointly measurable in all arguments,

such that a.e. A,

f(X(x) ,Y(y) ,Z(Z)) - (X(x),V(y) ,Y (Z)),

g(X(x) ,U(u)) = §(X(x) ,(u)), g' (Y(y) ,V (v)) = 1' (V(y) , (v)), (8.23)
x y

hTXh=r-in , h'-Y i case o (1.5, te i.

The orresponding conditions in case of (1.5) is that there should exist somre
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A-preserving transformations XXU,(xTT of and Zx,Z of [0,1), x,yER+,

such that a.e. A,

f (X(x) ,X(y), Zxy (z)) = (X(x) ,R(y) ,x (z)),

(gg')(X(x)1Ux(u)) = @!')(X(x),UM(u)), = = (8.24)

(h,h',fD).X= (hh'fD)oX, (LL').T = (,t').,.

The next result shows that the stated conditions for E - C are also

necessary. We omit the proof, since the required arguments are very similar to

those employed in Kallenberg(12)

Proposition 3. Consider two ergodic randcom measures E and t, with minimal

representations as in either one of the formulas (1.1)-(1.5). Assume also in case

of (1.3) that glkg2>... 7hen the stated conditions for d are both necessary

and sufficient.

We remark that, in view of Lmma 1, any ergodic random measure 4 with a

minimal representation as in (1.1)-(1.5) could also be represented in term of

any other set of functions and constants, uhich is equivalent in the sense of

Proposition 2. Thus the latter result also tells us essentially to what extent

the a.s. representations in (1.1)-(1.5) are unique.
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